ANNEALING EFFECT ON THE PROPERTIES OF INDIUM TIN OXIDES (IN$_2$O$_3$:SN) THIN FILMS PREPARED BY ULTRASONIC SPRAY TECHNIC

N. Hamani1, A. Attaf1*, H. Saidi1, K. G. Temmam1, A. Bouhdjer1, K. Bennaceur1, N. Messei1, Y. Benkhatta1, N. Attaf2

1Physics of Thin Films and Applications Laboratory, University of Biskra, BP 145 RP, Biskra 07000, Algeria

2Laboratoire de Couches Minces et Interfaces Faculté des Sciences Université de Constantine, Algeria

Received: 05 January 2018 / Accepted: 05 June 2018 / Published online: 01 September 2018

ABSTRACT

Indium tin oxide (ITO) films were deposited on glass substrates using ultrasonic spray technic. The ITO films (with 4% Sn-doping concentration at substrate temperature 400°C) were annealed in the air at 450, 500, and 550 °C for 2 h. The structural, morphological, electrical and optical properties of ITO films were investigated using: XRD, SEM, four-point probe and UV–visible. The XRD analysis reveals that the films are polycrystalline with body-centered cubic structure, and the cristaline state of the films improve with the increase of annealing temperature. Surface morphology of the films changes with the change of the annealing temperature. The high optical transmittance observed in the films annealed at 500 °C. The films annealed at 550°C shows the low electrical resistivity 25×10^{-4} Ωcm due to the decrease of the odsorbed oxygen on the surface morphology of this films.

Key words: indium tin oxide; High transparency; Surface morphology; electrical resistivity.

Author Correspondence, e-mail: ab_attaf@univ-biskra.dz
doi: http://dx.doi.org/10.4314/jfas.v10i3.13
1. **INTRODUCTION**

Indium tin oxide (ITO) is widely utilized in different industrial applications due to its unique combined properties of transparency to visible light and electrical conductivity and wide band gap (>3.5 eV) [1]. ITO films are highly degenerate n-type semiconductors, low electrical resistivity (~10^{-4} Ω-cm) [2,3], and high carrier concentration. high transmittance (>80%) in the visible range of the electromagnetic spectrum [4]. Due to their physical properties, it has potential applications in many devices, such as flat panel displays, solar cells, surface heaters for automobile windows, energy efficient windows, camera lenses, gas sensors, antireflection coatings and heat reflecting mirrors [5,6]. For these applications, the film should be a high electrical conductivity and a high visible transparency film.

The TTO films can be elaborated by various preparation techniques such as thermal/electron beam evaporation [7], radiofrequency/direct current sputtering [8], pulsed laser deposition [9], chemical vapor deposition [10], sol–gel process [11], and spray pyrolysis [12]. In this paper, we chose the spray ultrasonic technic to elaborate the ITO films due to several reasons such as: the low cost, it is possible to alter the electrical, mechanical, optical and magnetic properties of ITO nanostructures. And the simple deposition on glass substrate.

In this study, we prepared ITO films (with 4% Sn-doping concentration) by ultrasonic spray and investigated the structural, electrical and optical properties of the ITO films as a function of annealing temperature.

2. **EXPERIMENTAL PROCEDURE**

In the present work, Indium tin oxide films are prepared using an ultrasonic spray. In$_2$O$_3$:Sn solution were prepared by dissolving 0.1 M indium chloride (InCl$_3$) was used as the source of Indium source, dissolved in an appropriate amount of methanol CH$_3$OH solution (99.995%) purity and tin chloride penta-hydrate (SnCl$_4$·5H$_2$O) (99.0%) was used as tin (Sn) doped. Some drops of HCl solution have been added as stabilizer. The ITO films (with 4% Sn-doping concentration at 400°C) were annealed in the air at 450, 500, and 550 °C for 2 h. All Substrates were cleaned and degreased successively using Acetone, propanol, and distilled water. The solution flow rate was chosen to be 50 mL/h. Films structure was analyzed using
X-ray spectroscopy on a D8 ADVANCE Diffract meter by a Cu Kα radiation (λ =1.5405 Å), the optical transmittance spectra were obtained by a UV–VIS spectrophotometer (Perkin Elmer Lambda 25 UV-Visible) and these measurements were carried using glass as reference in a wavelength range of 200–1000 nm. Electrical resistivity was measured by four-point method. The morphology was analyzed by JOEL model JSM 6301F scanning electron microscope.

3. RESULTS AND DISCUSSION

3.1. X-Ray diffraction studies

Fig 1 shows XRD patterns of indium tin oxide films deposited on glass substrates annealed at different temperature 450, 500 and 550 °C for 2 h. All the films shows two strong reflection peaks at 30.80° and 35.66° which can be attributed respectively to the (222) and (400) plane suggesting that film is polycrystalline in nature having a cubic crystal structure. in addition to the presence of an others weak peaks such as (440) and (662). However, it is clear that the intensity of diffraction peaks increase with the increase of annealing temperature to 550 °C. This reveals the development of crystallinity due to having a sufficient amount of kinetic energy and mobility of the grains; the large grains absorb the small grains [13]. on the other hand, The XRD results suggest that the annealing temperature has not signficant effect on the preferred grothe orientation of ITO films; generally the (222) plane is the preferred growthe orientation due to the low surface energy [14]. This result goes in harmonic with the results of our erlier work [15]. Table 1 shows a comparison between XRD results and standard pattern for pure indium oxide In2O3.

The average grain size D of ITO thin films is calculated using Scherrer’s formula [16]:

$$G = \frac{K\lambda}{\beta \cos \theta}$$ \hspace{1cm} (1)

Where θ is the Bragg angle and β is the full width at half maximum (FWHM) of the peak, while λ is the X-ray wavelength. As can be seen from figure 2, the grains size increase with
the increase of annealing temperature. This is owing to the increase of the kinetic energy of the grains by increasing the annealing temperature; coalescence of small grains [15]. The same values of grains size obtained by others researches [17,18]. On the other hand, increase of the grains size as observed by SEM analysis (explained later).

![XRD patterns of ITO films annealed at different temperatures](image1.png)

Fig.1. XRD patterns of ITO films annealed at different temperatures

![Variation of grain size with annealing temperature](image2.png)

Fig.2. Variation of grain size with annealing temperature
Table 1. Comparison between XRD results and standard pattern for pure indium oxide

<table>
<thead>
<tr>
<th></th>
<th>Standard 2θ (°)</th>
<th>Observed 2θ (°)</th>
<th>hkl</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without annealing</td>
<td>30.580</td>
<td>30.6052</td>
<td>(222)</td>
<td>0.1476</td>
</tr>
<tr>
<td></td>
<td>35.451</td>
<td>35.4435</td>
<td>(400)</td>
<td>0.2066</td>
</tr>
<tr>
<td></td>
<td>51.049</td>
<td>51.0429</td>
<td>(440)</td>
<td>0.1771</td>
</tr>
<tr>
<td></td>
<td>60.662</td>
<td>60.6971</td>
<td>(622)</td>
<td>0.4320</td>
</tr>
<tr>
<td>Annealed at 450°C</td>
<td>30.580</td>
<td>30.6108</td>
<td>(222)</td>
<td>0.1181</td>
</tr>
<tr>
<td></td>
<td>35.451</td>
<td>35.4791</td>
<td>(400)</td>
<td>0.1771</td>
</tr>
<tr>
<td></td>
<td>51.049</td>
<td>51.0387</td>
<td>(440)</td>
<td>0.3542</td>
</tr>
<tr>
<td></td>
<td>60.662</td>
<td>60.7162</td>
<td>(622)</td>
<td>0.2880</td>
</tr>
<tr>
<td>Annealed at 500°C</td>
<td>30.580</td>
<td>30.6504</td>
<td>(222)</td>
<td>0.1476</td>
</tr>
<tr>
<td></td>
<td>35.451</td>
<td>35.5083</td>
<td>(400)</td>
<td>0.1476</td>
</tr>
<tr>
<td></td>
<td>60.662</td>
<td>60.8000</td>
<td>(622)</td>
<td>0.8640</td>
</tr>
<tr>
<td>Annealed at 550°C</td>
<td>30.580</td>
<td>30.6361</td>
<td>(222)</td>
<td>0.1181</td>
</tr>
<tr>
<td></td>
<td>35.451</td>
<td>35.4640</td>
<td>(400)</td>
<td>0.2066</td>
</tr>
<tr>
<td></td>
<td>51.049</td>
<td>51.0659</td>
<td>(440)</td>
<td>0.3542</td>
</tr>
<tr>
<td></td>
<td>60.662</td>
<td>60.7333</td>
<td>(622)</td>
<td>0.4320</td>
</tr>
</tbody>
</table>

The dislocation density (δ) and strain (ε) were calculated using the following formula [19]:

\[
\delta = \frac{1}{G^2}
\] \hspace{1cm} (2)

\[
\varepsilon = \frac{\beta \cos \theta}{4}
\] \hspace{1cm} (3)

The calculated structural parameters of prepared indium tin oxide thin films using the above are listed in Table 2. The calculated structural parameters of prepared indium tin oxide thin are listed in Table 2. The calculated values of lattice constant of prepared ITO films annealed at 450 and 500°C are a= 10.1073Å and 10.1145Å, respectively. They are slightly smaller than the reported value 10.118 Å for pure indium oxide (JCPDS Card No. 06-0416) [20]. Obtained lattice constant value is slightly increased for the film annealed at 550°C. This can
be attributed to the oxygen deficiency [21] because the In$_2$O$_3$ thin films tend toward reduction when they were annealed at high temperature [22]. The dislocation density (δ) and strain (ε) show a decreasing with increasing in annealing temperature. This is owing to recrystallization process in the films at high annealing temperature [23].

Table 2. Variation of grain size, strain, lattice parameter and dislocation density with annealing temperature

<table>
<thead>
<tr>
<th>T_a (°C)</th>
<th>D_{moy} (nm)</th>
<th>a (Å)</th>
<th>$\varepsilon \times 10^4$</th>
<th>δ (lines/m2) $\times 10^{14}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without annealing</td>
<td>50.182</td>
<td>10.1191</td>
<td>6.9048</td>
<td>3.9710</td>
</tr>
<tr>
<td>450</td>
<td>51.78</td>
<td>10.1073</td>
<td>6.6995</td>
<td>3.4012</td>
</tr>
<tr>
<td>500</td>
<td>60.21</td>
<td>10.1145</td>
<td>5.6726</td>
<td>2.7584</td>
</tr>
<tr>
<td>550</td>
<td>69.89</td>
<td>10.1191</td>
<td>4.9663</td>
<td>2.472</td>
</tr>
</tbody>
</table>

3.2. Surface morphological analysis
The scanning electron microscope (SEM) pictures in Figure 3 shows the typical surface morphology of the ITO films annealed at different temperature. It can be seen from the images that the films are dense and the grain size along sample surface increases as the annealing temperature is increased as we found in the XRD analysis. The surface of the film exhibited a polycrystalline nature with a grain size of about 70 nm after annealing. The micrograph shows a uniform film nature with distinct grain boundaries but the films prepared at 400°C have non-uniform particles (or clusters), the films annealed at 500°C has both small and big grains and the film annealed at 550°C has only big grains due to the high temperature.

3.3. Optical analysis
The effect of annealing temperature on the optical property of ITO films was examined. The ITO films with thickness of 184 nm were annealed at 450, 500 and 550°C for 2 h. Fig 4 shows the transmittance spectra of ITO films for different annealing temperatures and Table 1 shows the average transmittance in the visible region ($\lambda = 400$-700 nm). It is clear that the transmittance increases with increasing the annealing temperature from 450 to 550°C. The
Transmittance higher than 80% after annealing, and such results may be related to low scattering of light. The optical band gap of ITO thin films was calculated by the following expression [24],

\[
\alpha h = A(h \nu - E_g)^{1/2}
\]

Where \(\alpha\) is absorption coefficient, \(A\) is the constant independent of photon energy \((h \nu)\), \(h\) is the Planck constant and \(E_g\) is the energy band gap of the semiconductor equals the energy which provide an electron; in order to do a direct transition between valence and conduction bands. The value of optical band gap can be found by extrapolation of the linear region to \((\alpha h \nu)^2 = 0\) (fig 5) [16,24].

On the other hand, we have used the Urbach energy \((E_u)\), which is related to the disorder in the film network; as it is expressed follow [24],

\[
E_u = E_g - E_g^0 = \frac{\hbar}{2\pi m^*} \ln \left(\frac{B}{E_g - E_g^0} \right)
\]
\[A = A_0 \exp \left(\frac{\hbar \nu}{E_u} \right) \] \hspace{1cm} (5)

Where \(A_0 \) is a constant and \(E_u \) is the Urbach energy.

Fig.4. Transmittance spectra of ITO films annealed at different temperatures

Fig.5. The plot of \((\alpha \hbar \nu)^2\) vs.\((\hbar \nu)\)
The optical properties of the films are influenced by the oxygen diffusion with annealing temperature, the band gap decreases with increasing the annealing temperature from 500 to 550 °C (see figure 6). Further annealing temperature (450 °C), the band gap decreased; however, the oxygen vacancy for the decrease of gap energy after annealed [25, 26]. The minimum Urbach energy was reached at annealed temperature 450°C, which means the adequate temperature for less disorder. As expressed in the literatures [27, 28].

3.4. Electrical analysis

The annealing temperature has influences on the electrical property of the ITO films. Fig 7 shows the variation of resistivity as a function of annealing temperature for the ITO films with thickness of 184 nm. The resistivity of the ITO films decreased as the annealing temperature was increased from 450 to 550 °C. It indicates that the minimum resistivity is 0.0025 Ω .cm at 550 °C with annealing time of 120 min as shown in Fig. 7. When the composition in the crystallite of the thin films reaches optimal stoichiometric fraction, the crystallites gradually grow completely. The improved crystal performance and the reduction of grain boundary lead to the reduction of the absorption of donor SnO₂ in dislocation and crystal defects conditions. Therefore, the carrier concentration and carrier mobility also increased and with the subsequent reduction of the resistivity of the thin films [29].
4. CONCLUSIONS

The ITO films were deposited onto glass substrates by ultrasonic spray (with 4 wt% Sn and substrate temperature 400°C) and annealing at temperatures range 450-550 °C. The structural, electrical and optical properties of the films were studied as a function of annealing temperature. The XRD patterns exhibited a preferential orientation along the (2 2 2) and (4 0 0) directions. SEM indicated the spherical grain growth with sizes ranging between 51.78 to 69.89 nm. From the transmittance measurement using a spectrophotometer, it was found that optical transparency of ITO films were up to 83% in the visible region as the annealing temperature increased. The resistivity of the films had a minimum value of 0.0025 Ωcm when annealed at 550 °C.

5. REFERENCES

How to cite this article: