THIN LAYER DRYING STUDY OF ACORNS (Quercus ilex L.) -NEW MATHEMATICAL MODELLING APPROACH

Authors

  • Mahmoud TRACHI Department of Process Engineering, Faculty of Technology, M’hamed Bougara University, Boumerdes, 35000, Algérie
  • Hind Magaz Department of Process Engineering, Faculty of Technology, M’hamed Bougara University, Boumerdes, 35000, Algérie
  • Roumaissa Mahsas Department of Process Engineering, Faculty of Technology, M’hamed Bougara University, Boumerdes, 35000, Algérie

DOI:

https://doi.org/10.4314/jfas.1265

Keywords:

kinetic; moisture; mathematical model; traditional couscous.

Abstract

The thin layer drying behaviour of acorns was investigated at three oven temperatures (60, 70 and 80 °C). The drying kinetic was fitted and modelled using different mathematical drying models. The use of First-Order (FO) and Pseudo-First-Order (PFO) was proposed and estimated for describe the moisture content evolution of acorns as a function of time. According the coefficient of determination (), the root mean square error (RMSE) and the sum mean of square error (c²), the best fit was given by the Logarithmic model. A good fit ( > 0.9942; RMSE < 2.238 and c² < 6.014) was shown by FO and PFO indicating their aptitude to describe the thin layer drying kinetic of acorns. Effective moisture diffusivity increased from 4.016´10-8 to 1.244´10-7 m² s-1 with the rice of drying temperature. The elimination of water from the acorns requires an activation energy of about 55 kJ mol-1.

Downloads

Download data is not yet available.

References

Aregbesola O., Ogunsina B., Sofolahan A. and Chime N. Niger. Food J., 33, 2015, 83-89, https://doi.org/10.1016/j.nifoj.2015.1004.1012

Zhou Y. and Jin Y. Procedia Environ. Sci., 31, 2016, 758-766, https://doi.org/710.1016/j.proenv.2016.1002.1066

S.-H.M. Ashtiani, Salarikia A. and Golzarian M.R. Inf. Process. Agric., 4, 2017, 128-139, https://doi.org/110.1016/j.inpa.2017.1003.1001

Ben Haj Said L., Najjaa H., Farhat A., Neffati M. and Bellagha S. J. Food Sci. Technol., 52, 2015, 3739-3749, https://doi.org/3710.1007/s13197-13014-11435-13192

Darvishi H., Banakar A. and Zarein M. Mathematical modeling and thin layer drying kinetics of carrot slices, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 2012, 12:56-64

Evin D. Food Bioprod. Process., 90, 2012, 323-332, https://doi.org/310.1016/j.fbp.2011.1007.1002

Sacilik K. and Elicin A.K. J. Food Eng., 73, 2006, 281-289, https://doi.org/210.1016/j.jfoodeng.2005.1003.1024

Bimbenet J., Duquenoy A. and Trystram G. Génie des procédés alimentaires, 2 édition. ed, Technique et Ingénierie, in, Dunod, 2007, 574 p

Zarroug-Wederni Y., Mejri J., Bouanzi H., Felah M.E., Hassouna M.Caractérisation biochimique et valorisation de la farine du gland de chêne vert en panification. CRATT’2015 P90 HAMMAMET 30,31 Oct. et 01 Nov., 2015, 1-9

Lagergren S.K., About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl, 1898, 24:1-39

AOAC, 17th edn. In: Cunnif, P. (Ed.), Official Methods of Analysis Association of Official Analytical Chemists, , vol. II. Arlington, VA, USA, 2000, pp. 1-37

Dhanushkodi S., Wilson V.H., Sudhakar K. Resource-Efficient Technologies, 3, 2017, 359-364, https://doi.org/310.1016/j.reffit.2016.1012.1002

Lewis W.K., Ind. Eng. Chem. Res., 13, 1921, 427-432, https://doi.org/410.1016/j.reffit.2016.1012.1002

Hendreson S. and Pabis S. J. Grain drying theory. I. Temperature effect on drying coefficients. Agric. Eng. Res., 6, 1961, 169-174

Wang Z., Sun J., Liao X., Chen F., Zhao G., Wu J. and Hu X. Int. Food Res. J., 40, 2007, 39-46, https://doi.org/10.1016/j.clet.2020.100032

Thompson T., Peart R. and Foster G. Matllematical simulation of corn drying a new model. Trans. ASAE, 1968, 11:582-586

Wang C. and Singh R. Use of variable equilibrium moisture content in modeling rice drying, Trans. ASAE, 1978, 11: 668-672

Doymaz İ., Int. J. Food Prop., 13, 2010, 486-497, https://doi.org/410.1016/j.reffit.2016.1012.1002

Revellame E.D., Fortela D.L., Sharp W., Hernandez R. and Zappi M.E. Cleaner Engineering and Technology, 1, 2020, 100032, https://doi.org/100010.101016/j.clet.102020.100032

Omolola A.O., Kapila P.F., Silungwe H.M., Inf. Process. Agric., 6, 2019, 109-115, https://doi.org/110.1016/j.jfoodeng.2008.1006.1022

Kouhila M., Kechaou N., Otmani M., Fliyou M., Lahsasni S., Dry. Technol., 20, 2002, 2027-2039, https://doi.org/2010.1016/j.jfoodeng.2008.2006.2022

Soltani A., Azzouz S. and Rezouga F. Modélisation mathématique des cinétiques de séchage en couches minces des feuilles de laurier noble (Laurus nobilis), Recueil des résumés, 2015, 90

Bassene P.T., Sambou V., Talla A. and Gaye S., Détermination expérimentale et modélisation de la cinétique de séchage des granules de la farine de mil par la méthode de la courbe caractéristique de séchage (CCS)″, Afrique SCIENCE, 2017, 13:241-250

da Silva W.P., e Silva C.M., Gama F.J. and Gomes J.P. J. Saudi Soc. Agric. Sci., 13, 2014, 67-74, https://doi.org/10.1016/j.jssas.2017.1003.1002

Azeez L., Adebisi S.A., Oyedeji A.O., Adetoro R.O. and Tijani K.O. J. Saudi Soc. Agric. Sci., 18, 2019, 120-126, https://doi.org/110.1016/j.jssas.2017.1003.1002

Guo X.H., Xia C.Y., Tan Y.R., Long C. and Jian M. J. Integr. Agric., 13, 2014, 207-216, https://doi.org/210.1016/S2095-3119(1013)60265-60268

Akpinar E.K. and Bicer Y. Energy Convers. Manag., 49, 2008, 1367-1375, https://doi.org/1310.1016/j.jssas.2017.1303.1002

Hii C., Law C. and Cloke M. J. Food Eng., 90, 2009, 191-198, https://doi.org/110.1016/j.jfoodeng.2008.1006.1022

Aghbashlo M., Kianmehr M.H. and Arabhosseini A. Energy Convers. Manag., 50, 2009, 1348-1355, https://doi.org/1310.1016/j.jssas.2017.1303.1002

Alara O., Abdurahman N. and Olalere O. J. Saudi Soc. Agric. Sci., 18, 2019, 309-315, https://doi.org/310.1016/S0260-8774(1000)00088-00081

Waewsak J., Chindaruksa S. and Punlek C. A mathematical modeling study of hot air drying for some agricultural products, Sci. Technol. Asia, 2006, 14-20

Amini G., Salehi F. and Rasouli M. Inf. Process. Agric., 9, 2021, 397-405, https://doi.org/310.1016/j.inpa.2021.1007.1001

O. Sobukola, O. Dairo, Modeling drying kinetics of fever leaves (Ocimum viride) in a convective hot air dryer, 2007, https://www.bioline.org.br/abstract?id=nf07014

Haq R.U., Kumar P. and Prasad K., J. Saudi Soc. Agric. Sci., 17, 2018, 463-470, https://doi.org/410.1016/j.jssas.2016.1011.1004

Deshmukh A.W., Varma M.N., Yoo C.K. and Wasewar K.L. Chin. J. Eng., 2014, 2014, 1-7, http://dx.doi.org/10.1155/2014/305823

Xiao H.W., Yao X.D., Lin H., Yang W.X., Meng J.S. and Gao Z.J. J. Food Process Eng., 35, 2012, 370-390, https://doi.org/310.1111/j.1745-4530.2010.00594.x

Senadeera W., Bhandari B.R., Young G., Wijesinghe B. J. Food Eng., 58, 2003, 277-283, https://doi.org/210.1016/S0260-8774(1002)00386-00382

Sadin R., Chegini G.R. and Sadin H., Heat and Mass Transfer, 50, 2014, 501-507, https://doi.org/510.1007/s00231-00013-01255-00233

Tavakolipour H., Drying kinetics of pistachio nuts (Pistacia vera L.), World Appl. Sci. J., 2011, 12:1639-1646

Hebbar H.U. and Rastogi N. J. Food Eng., 47, 2001, 1-5. https://doi.org/10.1016/S0260-8774(1000)00088-00081

Roberts J.S., Kidd D.R., Padilla-Zakour O. J. Food Eng., 89, 2008, 460-465. https://doi.org/410.1016/S0260-8774(1000)00088-00081

Awuah G., Ramaswamy H.S. and Economides A. Chem. Eng. Process.: Process Intensif., 46, 2007, 584-602, https://doi.org/510.1016/j.clet.2020.100032

Downloads

Published

2023-01-02

How to Cite

TRACHI, M.; MAGAZ , H. .; MAHSAS, R. . THIN LAYER DRYING STUDY OF ACORNS (Quercus ilex L.) -NEW MATHEMATICAL MODELLING APPROACH. Journal of Fundamental and Applied Sciences, [S. l.], v. 15, n. 1, p. 83–100, 2023. DOI: 10.4314/jfas.1265. Disponível em: https://jfas.info/index.php/JFAS/article/view/1265. Acesso em: 29 jan. 2023.

Issue

Section

Articles