• Prince Kumar Shaheed Zulfikar Ali Bhutto Institute of Science and Technology
  • Shahid Aziz Asia e University
  • Anwar Baz Khan Muhammad Ali Jinnah University Karachi



Internet of Things (IoT), Artificial Intelligence (AI), Supply Chain Resilience, Data Analytics


The COVID-19 pandemic brought to light the vulnerabilities and disruptions within global supply chains, necessitating a comprehensive reevaluation of supply chain resilience strategies. In response, organizations across industries have increasingly turned to digital technologies, such as block chain, the Internet of Things (IoT), artificial intelligence (AI), and data analytics, to fortify their supply chains and ensure business continuity. The research methodology employs quantitative data collection techniques, utilizing surveys and questionnaires administered to supply chain professionals and managers. The stratified sampling method is applied to ensure representative participant selection. The subsequent data analysis is conducted using PLS (Partial Least Squares) Smart 4 to derive meaningful results. The findings reveal that digital technologies, encompassing, IoT, artificial intelligence, and data analytics, significantly contribute to enhancing supply chain resilience in the post-pandemic era.


Download data is not yet available.


S. A. R. Khan, A. Z. Piprani, and Z. Yu, “Supply chain analytics and post-pandemic performance: mediating role of triple-A supply chain strategies,” Int. J. Emerg. Mark., vol. 18, no. 6, pp. 1330–1354, 2023, doi: 10.1108/IJOEM-11-2021-1744.

X. Chen, C. He, Y. Chen, and Z. Xie, “Internet of Things (IoT)—blockchain-enabled pharmaceutical supply chain resilience in the post-pandemic era,” Front. Eng. Manag., vol. 10, no. 1, pp. 82–95, 2023, doi: 10.1007/s42524-022-0233-1.

M. Z. Alvarenga, M. P. V. De, Oliveira, and tiago A. G. F. de Oliveira, “ha y C pl up in en t : a n I nt er tio na l J na r na,” Supply Chain Manag., 2023.

B. Bigliardi, S. Filippelli, A. Petroni, and L. Tagliente, “The digitalization of supply chain: A review,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 1806–1815, 2022, doi: 10.1016/j.procs.2022.01.381.

D. Ivanov and A. Dolgui, “A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0,” Prod. Plan. Control, vol. 32, no. 9, pp. 775–788, 2021, doi: 10.1080/09537287.2020.1768450.

S. Gottlieb, D. Ivanov, and A. Das, Logistik im Wandel der Zeit – Von der Produktionssteuerung zu vernetzten Supply Chains, no. March. 2019.

H. Min, “Blockchain technology for enhancing supply chain resilience,” Bus. Horiz., vol. 62, no. 1, pp. 35–45, 2019, doi: 10.1016/j.bushor.2018.08.012.

I. V. de Farias, S. L. dos Santos Alvim, D. de Simas, and E. M. Frazzon, “Visibility model for enhancing supply chains resilience,” IFAC-PapersOnLine, vol. 55, no. 10, pp. 2521–2525, 2022, doi: 10.1016/j.ifacol.2022.10.088.

S. A. R. Khan, Z. Yu, M. Umar, A. B. Lopes de Sousa Jabbour, and R. S. Mor, “Tackling post-pandemic challenges with digital technologies: an empirical study,” J. Enterp. Inf. Manag., vol. 35, no. 1, pp. 36–57, 2022, doi: 10.1108/JEIM-01-2021-0040.

V. W. B. Martins, R. Anholon, W. Leal Filho, and O. L. G. Quelhas, “Resilience in the supply chain management: understanding critical aspects and how digital technologies can contribute to Brazilian companies in the COVID-19 context,” Mod. Supply Chain Res. Appl., vol. 4, no. 1, pp. 2–18, 2022, doi: 10.1108/mscra-05-2021-0005.

D. Ivanov, A. Dolgui, A. Das, and B. Sokolov, “Digital Supply Chain Twins: Managing the Ripple Effect, Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and Visibility,” Int. Ser. Oper. Res. Manag. Sci., vol. 276, no. January, pp. 309–332, 2019, doi: 10.1007/978-3-030-14302-2_15.

E. Taghizadeh and E. Taghizadeh, “The impact of digital technology and industry 4.0 on enhancing supply Chain resilience,” Proc. Int. Conf. Ind. Eng. Oper. Manag., vol. 0, pp. 2021–2029, 2021.

C. Bode, S. M. Wagner, K. J. Petersen, and L. M. Ellram, “Understanding responses to supply chain disruptions: Insights from information processing and resource dependence perspectives,” Acad. Manag. J., vol. 54, no. 4, pp. 833–856, 2011, doi: 10.5465/AMJ.2011.64870145.

S. Ambulkar, J. Blackhurst, and S. Grawe, “Firm’s resilience to supply chain disruptions: Scale development and empirical examination,” J. Oper. Manag., vol. 33–34, pp. 111–122, 2015, doi: 10.1016/j.jom.2014.11.002.

P. Kumar and S. Aziz, “Managing Supply Chain Risk with the Integration of Internet of things in the manufacturing Sector of Pakistan,” vol. 5, no. 2, 2022.

M. Attaran, “Digital technology enablers and their implications for supply chain management,” Supply Chain Forum, vol. 21, no. 3, pp. 158–172, 2020, doi: 10.1080/16258312.2020.1751568.

T. López, T. Riedler, H. Köhnen, and M. Fütterer, “Digital value chain restructuring and labour process transformations in the fast-fashion sector: Evidence from the value chains of Zara & H&M,” Glob. Networks, no. November 2021, pp. 684–700, 2021, doi: 10.1111/glob.12353.

S. U. Rehman, M. Usman, Y. Fernando, D. Kamarudin, and A. Waheed, “Improving manufacturing supply chain performance: nexus of industrial Internet of Things, blockchain technology and innovativeness,” J. Sci. Technol. Policy Manag., no. July, 2023, doi: 10.1108/JSTPM-12-2021-0191.

S. A. Gawankar, A. Gunasekaran, and S. Kamble, “A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context,” Int. J. Prod. Res., vol. 58, no. 5, pp. 1574–1593, 2020, doi: 10.1080/00207543.2019.1668070.

Y. P. Tsang, K. L. Choy, C. H. Wu, G. T. S. Ho, C. H. Y. Lam, and P. S. Koo, “An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks,” Ind. Manag. Data Syst., vol. 118, no. 7, pp. 1432–1462, 2018, doi: 10.1108/IMDS-09-2017-0384.

A. Sawangwong and P. Chaopaisarn, “The impact of applying knowledge in the technological pillars of Industry 4.0 on supply chain performance,” Kybernetes, vol. 52, no. 3, pp. 1094–1126, 2023, doi: 10.1108/K-07-2021-0555.

A. K. Pundir, J. D. Jagannath, and L. Ganapathy, “Improving supply chain visibility using IoT-internet of things,” 2019 IEEE 9th Annu. Comput. Commun. Work. Conf. CCWC 2019, pp. 156–162, 2019, doi: 10.1109/CCWC.2019.8666480.

N. Mostafa, W. Hamdy, and H. Alawady, “Impacts of internet of things on supply chains: A framework for warehousing,” Soc. Sci., vol. 8, no. 3, 2019, doi: 10.3390/socsci8030084.

S. N. Yoon, D. H. Lee, and M. Schniederjans, “Effects of innovation leadership and supply chain innovation on supply chain efficiency: Focusing on hospital size,” Technol. Forecast. Soc. Change, vol. 113, pp. 412–421, 2016, doi: 10.1016/j.techfore.2016.07.015.

J. Zhao, H. Olivieri, O. Seppänen, A. Peltokorpi, B. Badihi, and P. Lundström, “Data analysis on applying real time tracking in production control of construction,” IEEE Int. Conf. Ind. Eng. Eng. Manag., vol. 2017-Decem, no. February 2019, pp. 573–577, 2018, doi: 10.1109/IEEM.2017.8289956.

D. McFarlane and Y. Sheffi, “The Impact of Automatic Identification on Supply Chain Operations,” Int. J. Logist. Manag., vol. 14, no. 1, pp. 1–17, 2003, doi: 10.1108/09574090310806503.

D. Chong and H. Ali, “Iot Relationship With Supply Chain , Work Effectiveness and Individual Behaviour,” Dinasti Int. J. Digit. Bus. Manag., vol. 3, no. 1, pp. 170–179, 2021.

J. F. Hair Jr., M. L. D. da S. Gabriel, and V. K. Patel, “Modelagem de Equações Estruturais Baseada em Covariância (CB-SEM) com o AMOS: Orientações sobre a sua aplicação como uma Ferramenta de Pesquisa de Marketing,” Rev. Bras. Mark., vol. 13, no. 2, pp. 44–55, 2014, doi: 10.5585/remark.v13i2.2718.




How to Cite

KUMAR, P.; AZIZ, S.; KHAN, A. B. ANALYZING THE IMPACT OF DIGITAL TECHNOLOGIES ON ENHANCING SUPPLY CHAIN RESILIENCE IN THE POST-PANDEMIC ERA. Journal of Fundamental and Applied Sciences, [S. l.], v. 16, n. 1, p. 15–35, 2024. DOI: 10.4314/jfas.1358. Disponível em: Acesso em: 13 jul. 2024.