THE PARAMETRIC STUDY OF AN ABSORPTION REFRIGERATION SYSTEM SINGLE EFFECT WITH WATER-LITHIUM BROMIDE
DOI:
https://doi.org/10.4314/jfas.v12i3.3Keywords:
Absorption Refrigeration ; Cooling; EES; Water-Lithium Bromide.Abstract
Absorption machines present an interesting alternative to conventional air conditioning systems. The Absorption machines offer an ecological aspect, in terms of the possibility of using solar energy as a heat source, and refrigerant having no ozone – depleting potential or global warning effect reported in literature.
In this paper a performance of a Single effect absorption refrigeration systems of Water-Lithium Bromide are studied, some physical quantities where modelled and Plots, in particular the effect of operating temperatures on the coefficient of performance and the impact of solution exchanger efficiency and the system efficiency.
Downloads
References
[2] Monné, C., Alonso, S., Palacín, F., Serra, L. 2011. Monitoring and simulation of an existing solar powered absorption cooling system in Zaragoza (Spain). Applied Thermal Engineering, 31(1): 28–35. https://doi.org/10.1016/j.applthermaleng.2010.08.002
[3] Cirillo, L., Della Corte, A., Nardini, S. 2016. Feasibility study of solar cooling thermally driven system configurations for an office building in mediterranean area. International journal of Heat and technology, 34(2): 472-480. https://doi.org/10.18280/ijht.34S240.
[4] Cascetta, F., Cirillo, L., Della Corte, A., Nardini, S. 2017. Comparison between different solar cooling thermally driven system solutions for an office building in mediterranean area. International journal of Heat and Technology, 35(1): 130-138. doi: 10.18280/ijht.350118.
[5] Kohlenbach, P., Ziegler, F.2008. A dynamic simulation model for transient absorption chiller performance. Part I: The model. International journal of refrigeration, 31: 2 1 7 – 2 2 5.
doi:10.1016/j.ijrefrig.2007.06.009
[6] Kohlenbach P, Ziegler F.2008. A dynamic simulation model for transient absorption chiller performance. Part II: Numerical results and experimental verification. International journal of refrigeration, 31: 226–233. doi:10.1016/j.ijrefrig.2007.06.010
[7] Erregueragui, Z., Al Mers, A., Boutammache, N., Erroun, O., and Bouatem, A. Modeling and optimization of absorption refrigeration cycles operating with the couple H2O / LiBr
[8] Boudéhenn, F., Bonnot, S., Demasles, H., and Lazrak, A. 2014. Comparison of different modeling methods for a single effect water-lithium bromide absorption chiller. Conference Proceedings International Solar Energy Society.
[9] Bonab, M.S., Khosroshahi, A., Garousi Farshi, L. 2015. Modeling water lithium bromide absorption chiller with a heat exchanger in EES and ASPEN Plus. International Conference on research engineering science and technology
[10] Somers, C., Mortazavi, A., Hwang, Y., Radermacher, R., Rodgers, P., Al-Hashimi, S. 2011. Modeling water/lithium bromide absorption chillers in ASPEN Plus. Applied Energy, 88(11): 4197–4205. https://doi.org/10.1016/j.apenergy.2011.05.018
[11] Tesha. 2010. Absorption refrigeration system as an integrated condenser cooling unit in a geothermal power plant. Proceedings World Geothermal Congress, Bali, Indonesia, pp. S1-S5.
[12] Boer, D., Medrano, M., Miquel, N. 2005. Exergy and structural analysis of an absorption cooling cycle and the effect of efficiency parameters. International Journal of Thermodynamics, 8(4). doi: 10.5541/ijot.161
[13] Wang, X., Chua, H. 2009. Absorption cooling: A review of lithium bromide-water chiller technologies. Recent Patents on Mechanical Engineering, 2 (3):193-213. doi: 10.2174/1874477X10902030193
[14] Wang, J., Shang, S., Li. X., Wang, B., Wei, W., Wenyuan, S. 2017. Dynamic performance analysis for an absorption chiller under different working conditions. Applied Sciences (Switzerland). 7(8). doi:10.3390/app7080797
[15] Carré, F.P.E.(1873). RE05287.
[16] Foley, G., Devault, R., Sweetser, R. 2000. The future of absorption technology in America a critical look at the impact of BCHP and innovation. Conference Advanced Building Systems. pp. S1-S12.
[17] Uchida, S. 1996. Absorption chiller. Patent number: 5,479.783 (45), United States Patent.
[18] Inoue, N., Matsubara, T., Irie, T. 2002. , Patent number: 20026442964, United States Patent.
[19] Liao, X., Radermacher, R. 2007. Absorption chiller crystallization control strategies for integrated cooling heating and power systems. International Journal of Refrigeration, 30(5): 904-911. https://doi .org/10.1016/j.ijrefrig.2006.10.009
[20] EES – Engineering Equation Solver. – Process Simulation F-Chart Softwar. http:// www.fchart.com/ees/new-features.php/, accessed on Jan. 20, 2016.
[21] Balghouthi, M., Chahbani, M H., Guizani, A. 2008. Feasibility of solar absorption air conditioning in Tunisia. Building and Environment. 43(9): 1459–1470. https://doi.org/10.1016/j.buildenv. 2007.08.003
[22] Herold, K E., Radermacher, R. and Klein, S A. 1996. Absorption chillers and heat pumps, Boca Raton, New York, London Tokyo: CRC Press. 271-283.
[23] Albers, J., Kuhn, A., Petersen, S., Ziegler, F. 2008. Control of absorption chillers by insight: the characteristic equation. Czasopismo Techniczne Mechanika. (5):3-12.
http://suw.biblos.pk.edu.pl /resource details and Id=786
[24] Iranmanesh, A., Mehrabian, M.A. 2013. Dynamic simulation of a single-effect LiBr-H2O absorption refrigeration cycle considering the effects of thermal masses. Energy and Building, (60): 47–59. https://doi.org/10.1016/j.enbuild.2012.12.015
[25] Pátek, J., Klomfar, A. 2006. Computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range. International Journal of Refrigeration, 29 (4): 566-578. https://doi.org/10.1016/j.ijrefrig.2005.10.007
[26] Giannetti, N., Rocchetti, A., Saito, K. 2016. Thermodynamic optimization of three-thermal irreversible systems. International Journal of Heat and Technology, 34 (1):83-90 http://dx.doi.org/10.18280/ijht.34s110
[27] Srikhirin, P., Aphornratana, S., Chungpaibulpatana, S. 2001. A review of absorption refrigeration Technologies. Renewable and Sustainable Energy Reviews, 5 (4): 343–372. https://doi.org/10.1016/S1364-0321(01)00003-X
[28] Romero, R J., Rivera, W., Gracia, J., Best R. 2001. Theoretical comparison of performance of an absorption heat pump system for cooling and heating operating with an aqueous ternary hydroxide and water/ lithium bromide. Applied Thermal Engineering, 21(11): 1137–1147. https://doi.org/10.1016/S1359-4311(00)00111-3.