MOLECULAR BASIS OF OUR ORGANISM’S INTOLERANCE TO LACK OF GENETIC MATERIAL

Authors

  • S. Boumendjel Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, Annaba, 23000, Annaba, Algeria

DOI:

https://doi.org/10.4314/jfas.v13i2.5

Keywords:

lack; genetic material; deletion; autosomal monosomy; serious consequences; intolerance.

Abstract

Chromosomal fragments deletions are very harmful. They are almost lethal even in the presence of a normal homologue. Autosomal monosomies are incompatible with survival. However, micro-deletions are less fatal but they often produce clinical syndromes With characteristic phenotypes. Thus, a question rises: why does our organism not tolerate the lack of genetic material ? The present work, is a profound investigation on the molecular basis of the intolerance of our organism to the lack of genetic material. The subject under discussion has never been dealt with before. Up to now, no article had been published on this matter.

Downloads

Download data is not yet available.

References

[1] A.J.F. Griffiths, S. Wessler, S. B. Carroll, et J. Doebley. Introduction à l'analyse génétique. 6eme édition. Bruxelles: De Boeck, 2013, pp 830.
[2] Ouldim K, Bouguenouch L, et Samri I. Syndromes microdélétionnels (syndrome de Williams et syndrome de la délétion 22q11) au CHU Hassan II de Fès: à propos de 3 observations. The Cri du Chat syndrome: report of an observation. Pan. Afr. Med. J., 2012, 11: 3.
[3] Soliani L. et Lucchetti E. « Les facteurs génétiques de la mortalité ». In G. Caselli, J. Vallin et G. Wunsch (dir.), Démographie: Les déterminants de la mortalité. Paris: INED, 2002, pp.205-227.
[4] https://www.ncbi.nlm.nih.gov/books/NBK20363/. Consulté le 20 Mai 2018
[5] Gao Z., Waggoner D., and Stephens M., Genetics. 2015, 199 (4), 243-1254, doi: 10.1534/genetics.114.173351.
[6] Acuna-Hidalgo R., Veltman J. A., et Hoischen A., Genome. Biol. 2016, 17 (1), 241, doi: 10.1186/s13059-016-1110-1.
[7] Iossifov I., O’Roak B.J., Sanders S.J., Ronemus M. et al., Nature. 2014, 515 (7526), 216–21, doi: 10.1038/nature13908.
[8] O’Roak B.J., Deriziotis P., Lee C., Vives L. et al., Nat. Genet. 2011, 43 (6), 585–9, doi: 10.1038/ng.835.
[9] Girard S.L., Dion P.A., Bourassa C.V., Geoffroy S., et al., PLoS. One. 2015, 10(6), doi.org/10.1371/journal.pone.0128988.
[10] Lin Z., Liu Z., Li X., Li F., et al., Sci. Rep. 2017, 7(1), 258, doi.org/10.1038/s41598-017-00208-6.
[11] De Ligt J., Willemsen M.H., van Bon B.W., Kleefstra T., et al., N. Engl. J. Med. 2012, 367 (20), ,1921–9, doi: 10.1056/NEJMoa1206524.
[12] Perry G. H., Dominy N. J., Claw K.G., Lee A. S., et al., Nat. Genet. 2007, 39 (10), 1256–1260, doi: 10.1038/ng2123.
[13] Huang N., Lee I., Marcotte E.M., et Hurles M.E., PLoS. Genet. 2010, 6(10), doi.org/10.1371/journal.pgen.1001154.
[14] Deutschbauer A.M., Jaramillo D.F., Proctor M., Kumm J., et al., Genetics. 2005, 169 (4), 1915-25, doi.org/10.1534/genetics.104.036871.
[15] Cody J.D., Carter E.M., Sebold C., Heard P.L., et al., Genet. Med. 2009, 11(11), 778-82, doi: 10.1097/GIM.0b013e3181b6573d.
[16] Dang V.T., Kassahn K.S., Marcos A.E., et Ragan M.A., Eur .J. Hum. Genet. 2008, 16(11), 1350-7, doi: 10.1038/ejhg.2008.111.
[17] Inoue K., Dewar K., Katsanis N., Reiter L.T., et al., Genome. Res. 2001, 11(6), 1018-33, doi: 10.1101/gr.180401.
[18] Heard P.L., Carter E.M., Crandall A.C., Sebold C., et al., Am. J. Med. Genet. A. 2009, 149A (7), 1431–1437, doi: 10.1002/ajmg.a.32900.
[19] Feenstra I., Vissers LE., Orsel M., van Kessel A.G., et al., Am. J. Med. Genet. A. 2007, 143A (16), 1858-67, doi: 10.1002/ajmg.a.31850.
[20] Chen P.L., Liu F., Cai S., Lin X., et al., Mol. Cell. Biol. 2005, 25(9), 3535–3542, doi: 10.1128/MCB.25.9.3535-3542.2005.
[21] Kondrashov F.A., et Koonin E.V., Trends. Genet. 2004, 20 (7), 287–90, doi: 10.1016/j.tig.2004.05.001.
[22] Papp B., Pal C., et Hurst L.D., Nature. 2003, 424(6945), 194–197, doi: 10.1038/nature01771.
[23] Abruzzi K.C., Smith A., Chen W., et Solomon F., Mol. Cell. Biol 2002, 22(1), 138-47. doi: 10.1128/MCB.22.1.138-147.2002.
[24] Henckel A., et Feil R., Med. Sci. 2008, 24 (8-9), 747–752, doi.org/10.1051/medsci/20082489747.
[25] Gabory A., et Dandolo L., Med. Sci. 2005, 21(4), 390-5, doi.org/10.1051/medsci/2005214390.
[26] Bartolomei M. S., et Ferguson-Smith A. C., Cold. Spring. Harb. Perspect. Biol. 2011, 3 (7), doi 10.1101/cshperspect.a002592.
[27] Frost J.M., et Moore G. E., PLoS. Genet. 2010, 6(7), doi: 10.1371/journal.pgen.1001015.
[28] Wilkinson L.S., Davies W., et Isles A.R., Nat. Rev. Neurosci. 2007, 8 (11) :832-43. doi: 10.1038/nrn2235.
[29] Constância M.., Hemberger M.., Hughes J., Dean W., et al., Nature. 2002, 417 (6892), 945-948. doi: 10.1038/nature00819.
[30] Barton SC, Ferguson-Smith AC, Fundele R, Surani A. Influence of paternally imprinted genes on development. Development., 1991, 113(2) :679-88.

Downloads

Published

2021-01-10

How to Cite

BOUMENDJEL, S. MOLECULAR BASIS OF OUR ORGANISM’S INTOLERANCE TO LACK OF GENETIC MATERIAL. Journal of Fundamental and Applied Sciences, [S. l.], v. 13, n. 2, p. 708–723, 2021. DOI: 10.4314/jfas.v13i2.5. Disponível em: https://jfas.info/index.php/JFAS/article/view/1049. Acesso em: 30 jan. 2025.

Issue

Section

Articles