REVIEW ON THERMAL INSULATION OF BUILDINGS WITH PHASE CHANGE MATERIALS: INCORPORATION METHODS AND APPLICATIONS

Authors

  • A. Sarri Department of Applied Sciences, Kasdi Merbah University, Ouargla, Algérie
  • D. Bechki Laboratory of New and Renewable Energies in Arid Zones (LENREZA), Road to Ghardaia, 3000 Ouargla, Algeria
  • S. Boughali Laboratory of New and Renewable Energies in Arid Zones (LENREZA), Road to Ghardaia, 3000 Ouargla
  • H. Bouguettaia Laboratory of New and Renewable Energies in Arid Zones (LENREZA), Road to Ghardaia, 3000 Ouargla

DOI:

https://doi.org/10.4314/jfas.v11i1.17

Keywords:

PCM; Thermal storage; Latent heat; Building envelopes.

Abstract

Reducing energy consumption is an increasingly important issue for the residential sector. As a result, attention to thermal insulation systems for buildings has increased in recent years. The use of phase change materials (PCMs) is an attractive way for the development of energy-efficient buildings by integrating with the walls, ceiling and floor, which offers considerable possibilities for insulation and to ensure a certain thermal comfort, because of their high storage density. This paper summarizes the essential knowledge on solid-liquid phase change theory, PCM classification, some previous work on storage of latent thermal energy in buildings, covering experimental and numerical studies with different applications of PCMs to buildings.

Downloads

Download data is not yet available.

References

[1] Ogulata RG. Sectoral energy consumption in Turkey. Renew Sustain Energy Rev 2002; 6:471–80.
[2] Hasan A. Optimizing insulation thickness for buildings using life cycle cost. Appl Energy 1999;63:115–24.
[3] Bilan Energétique National de l'année. Edition 2011. Ministère de l'énergie et des mines, Agence Nationale pour la Promotion et la Rationalisation de l'Utilisation de l'Energie.
[4] Wang Y, Huang Z, Heng L. Cost-effectiveness assessment of insulated exterior walls of residential buildings in cold climate. Int J Project Manage 2007; 25:143–9.
[5] Al-Homoud MS. Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 2005; 40:353–66.
[6] Amy S. Fleischer 2015. Chapter 1An Introduction to Phase Change Materials. Thermal Energy Storage Using Phase Change Materials Fundamentals and Applications. Villanova, PA. Springer, p. 1-6.
[7] Kuznik F., Damien D., Kevyn J., Roux JJ. A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews 15 (2011) 379–391.
[8] Bianchi AM., Fautrelle, Y., & Etay, J. 2004. Transferts thermiques. Presses polytechniques et universitaires romandes.
[9] Guichard S. (2013). Contribution à l’Étude des Parois Complexes intégrant des Matériaux à Changements de Phase : Modélisation, Expérimentation et Évaluation de la performance énergétique globale. Université de La Réunion.
[10] Hasnain SM. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques, Energy research, Vol. 39(11), pp. 1127 – 1138, 1997.
[11] Zalba B., Marin J.M., Cabeza LF., Melhing H. Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Applied Thermal Engineering, Vol. 23, pp. 251 – 283, 2003.
[12] Zhou D., Zhao CY. , Tian Y. A Review on thermal energy storage with phase change materials (PCMs)in building applications. Applied Energy 92 (2012) 593–605.
[13] Farid MM., Khudhair AM., Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Conversion and Management 45 (2004) 1597–1615.
[14] Jan Kośny 2015. Chapter 2 Short History of PCM Applications in Building Envelopes. PCM - Enhanced Building Components An Application of Phase Change Materials in Building Envelopes and Internal Structures. Boston. Springer, p. 21-59.
[15] Dipl.-Ing. Jens H. Dieckmann. Latent heat storage in concrete. University of Kaiserslautern, Germany; 2006. <http://www.eurosolar.de/>.
[16] Zhang YP, Jiang YA. Simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measur Sci Technol 1999;10:201–5.
[17] Hong H., Kim SK., Kim YS. Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int J Refrig 2004;27:360–6.
[18] Peck JH., Kim JJ., Kang C., Hong H. A study of accurate latent heat measurement for a PCM with a low melting temperature using Thistory method. Int J Refrig 2006;29:1225–32.
[19] Liwu Fan, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 15 (2011) 24–46.
[20] Telkes M. Solar house heating—a problem of heat storage. J. Heat Ventilating 1947; 44:68– 75.
[21] WANG X., ZHANG Y., XIAO W., ZENG R., ZHANG Q. & DI HongFa. Review on thermal performance of phase change energy storage building envelope. Chinese Science Bulletin | March 2009 | vol. 54 | no. 6 | 920-928.
[22] Sharma A., Tyagi V.V., Chen C.R., Buddhi & D. 2009a. Review on thermal energy storage with phase change materials and applications. Renewable and sustainable energy reviews, Vol.13, pages 318–345.
[23] Hawes DW., Feldman D., Banu D. Latent heat storage in building materials. Energy Build 1993;20:77–86.
[24] Hawlader MN., Uddin MS. Zhu HJ. Encapsulated phase change materials for thermal energy storage: experiments and simulation. Int J Energy Res 2002;26:159–71.
[25] Cabeza LF., Castellon C., Nogues M, Medrano M., Leppers R, Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy and buildings, 39(2), 113 –119.
[26] Athienitis AK., Liu C., Hawes D, Banu D., Feldman D. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build Environ 1997;2(5):3405–10.
[27] Kuznik F, Virgone J, Johannes K. In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew Energy 2011;36:1458–62.
[28] Castell A., Martorell I., Medrano M., Perez G., Cabeza LF. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy and buildings, 42(4), 534 – 540.
[29] Zhang YP., Lin KP., Yang R., Di HF., Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build 2006;38:1262–9.
[30] Suliang, Cao. (2010). State of the art thermal energy storage solutions for high performance buildings. M.Phil. thesis, Université de Jyväskylä.
[31] Karthik M., Patrick P. Experimental investigation of a bio-based phase-change material to improve building energy performance. Proceedings of the ASME 2010 4th International Conference on Energy Sustainability ES 2010.
[32] Reza B., Chen JJ., Young BR., Farid MM. Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system. Applied Energy 148 (2015) 39–48.
[33] Crank J. Free and moving boundary problems. Clarendon Press; 1984.
[34] Alexiades V., Solomon AD. Mathematical modeling of melting and freezing processes. Hemisphere Pub. Corp.; 1993.
[35] Saleh N. AL-Saadi, Zhiqiang Z. Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews 21 (2013) 659–673.
[36] Gowreesunker BL., Tassou SA., Kolokotroni M. Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an airport terminal building displacement conditioning system. Build Environ (2013) 65:132–145
[37] Susman G., Dehouche Z., Cheechern T., Craig S. Tests of prototype PCM ‘ sails’ for office cooling. Appl Therm Eng (2011) 31:717– 726.
[38] Ye WB., Zhu DS., Wang N. Numerical simulation on phase-change thermal storage/release in a plate-fi n unit. Appl Therm Eng (2011) 31:3871–3884.
[39] Chen C., Guo H., Liu Y., Yue H., Wang C. A new kind of phase change material (PCM) for energy-storing wallboard. Energy Build (2008) 40:882– 890.

Downloads

Published

2018-12-11

How to Cite

SARRI, A.; BECHKI, D.; BOUGHALI, S.; BOUGUETTAIA, H. REVIEW ON THERMAL INSULATION OF BUILDINGS WITH PHASE CHANGE MATERIALS: INCORPORATION METHODS AND APPLICATIONS. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 1, p. 259–279, 2018. DOI: 10.4314/jfas.v11i1.17. Disponível em: https://jfas.info/index.php/JFAS/article/view/115. Acesso em: 31 jan. 2025.

Issue

Section

Articles