A DFT STUDY OF HYPER-RAYLEIGH SCATTERING (HRS) FIRST HYPERPOLARIZABILITY OF SUBSTITUTED POLYENE: PART (II)
DOI:
https://doi.org/10.4314/jfas.v14i1.12Keywords:
first hyperpolarizabilities, HRS, D/A Π-conjugated polyene, DFT, MP2Abstract
Several DFT functionals have been carried out to study the first hyperpolarizabilities βHRS of push-pull polyene as a function the basis sets, of electron correlation, of the size, of the frequency dispersion and the geometry. These calculations confirm the huge effects of electron correlation, the Møller–Plesset (MP2) results reproduces the values of the first hyperpolarizability obtained with the reference CCSD(T) level. Among density functional theory exchange- correlation functionals, B3LYP, M062X, B3P86 and CAM-B3LYP are comparable to the MP2 for characterizing the dynamic first hyperpolarizability. The TDB3LYP/6-31+G* level show that, as increasing the the separation distance (dN···N /Å) and introducing a stronger donor the avereage BLA value decreases and the βHRS increase. In addition, a quantitative relationship was established between the first hyperpolarizability bHRS and the separation distance (dN···N /Å) at MP2, B3LYP and M062X level of theory.
Downloads
References
Champagne B and. Kirtman B. in Handbook of Advanced Electronic and Photonic
Materials and Devices, H. S.Nalwa (Eds.), New York: Academic Press, 2001, pp. 63
Alexander J T L, Elizabeth F. C. D, Stephen C. R, Tobin J. M. Molecular Design Principles for Magneto-Electric Materials: All-Electric Susceptibilities Relevant to Optimal Molecular Chromophores. The Journal of Physical Chemistry C, 2017, 121, (30), 16491 -16500. https://doi.org/10.1021/acs.jpcc.7b04307
Jialei L, Canbin O, Fuyang H, Wenqing H, Aocheng C. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes and Pigments, 2020, 181, 108509. https:// doi.org/10.1016/ j.dyepig. 2020. 108509
Diego P, Hélio F. Dos Santos. Computational protocol to predict hyper polarizabilities of large π-conjugated organic push–pull molecules. Organic Electronics, 2016, 28,111–117. https://doi.org/10.1016/j.orgel.2015.10.019
Alexander JT L, Tobin J M. A twist on nonlinear optics: understanding the unique response of π-twisted chromophores. Accounts of Chemical Research, 2019, 52, (5),1428 –1438. https://doi.org/10.1021/acs.accounts.9b00077
Oviedo M B, Ilawe NV, Wong B M. Polarizabilities of π-conjugated chains revisited:
Improved results from broken-symmetry range-separated DFT and New CCSD benchmarks.
J. Chem. Theory Comput, 2016, 12, (8), 3593–3602. https://doi.org/10.1021/acs.jctc.6b00360
Liu Y, Yuan Y, Tian X, Yuan J, Sun J. Computational design of p-(dimethylamino)
benzylidene derived push-pull polyenes with high first-hyperpolarizabilities. Phys. Chem.
Chem. Phys, 2020, 22, 5090–5104. https://doi.org/ 10.1039/C9CP05631A
Yanling S, Guochun Y. Non-planar donor–acceptor chiral molecules with large second order optical nonlinearities: 1,1,4,4-Tetracyanobuta-1,3-diene derivatives. J. Phys.Chem A, 2014, 118, (6), 1094–1102. https://doi.org/10.1021/jp4099717
Beverina L, Pagani G A. Π Conjugated zwitterions as paradigm of donor acceptor
building blocks in organic-based materials. Accounts of Chemical Research, 2014, 47, (2),
–329. https://doi.org/10.1021/ar4000967
Lijuan Z, Dongdong Q, Luyang Z, Chao C, Yongzhong B, Wenjun L.Density Functional
Theory Study on Subtriazaporphyrin Derivatives: Dipolar/Octupolar Contribution to the
Second-Order Nonlinear Optical Activity. J. Phys. Chem. A, 2012, 116, 10249–10256.
http:// dx.doi.org/10.1021/jp3079293
Kaushik H, Prasanta K. N. Effect of alkaline earth metal at the single wall CNT mouth on the electronic structure and second hyperpolarizability. Journal of Theoretical and Computational Chemistry, 2016, 15, (05),1650040.https://doi.org/10.1142/S021963361650 0401
Champagne B J, Labidi N S. Second-order nonlinear optical responses of heptahelicene and heptathiahelicene derivatives. Chemical Physics Letters, 2016, 644,195–200. http://dx. doi.org/10.1016/j.cplett.2015.12.008
Meier de Andrade A, Loren Inacio P, Alexandre Camilo Jr. Theoretical investigation of second hyperpolarizability of trans-polyacetylene: Comparison between experimental and theoretical results for small oligomers. J. Chem. Phys, 2015,143, 244906–7.https:// doi.org/10.1063/1.4939083
Himadri C, Giant first hyperpolarizabilities of donor–acceptor substituted graphyne: An ab initio study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 226–230. http://dx.doi.org/10.1016/j.saa.2015.08.021
Labidi N S. Solvent effect on hyper-rayleigh scattering (HRS) first hyperpolarizability of
substituted polyene: part (I). J. Fundam. Appl. Sci, 2021, 13, (3), 1175–1192. http:// dx.doi.org /10.4314/jfas.v13i3.2
Tomasi J, Mennucci B, Ammi R. Quantum mechanical continuum solvation models. Chem. Rev, 2005, 105, (8), 2999–3094. https://doi.org/10.1021/cr9904009
Sekino H, Bartlett R J. Frequency dependent nonlinear optical properties of molecules. J. Chem. Phys, 1986,85,(2), 976–989. https://doi.org/10.1063/1.451255
Van Gisbergen S J A, Snijders J G, Baerends E J. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules. J. Chem. Phys, 1998, 109, (24), 10657–10668. https://doi.org/ 10.1063/1.477763
Becke A D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys, 1993, 98, 5648−5652. https://doi.org/10.1063/1.464913
Zhao Y E, Schultz N and Truhlar D G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J. Chem. Phys, 2005, 123, 161103−4. https://doi.org/10.1063/1.2126975
Iikura H, Tsuneda T, Yanai T, Hirao K. A long-range correction scheme for generalized gradient-approximation exchange functionals. J. Chem. Phys, 2001,115, 3540 − 3544. https :// doi.org/10.1063/1.1383587
Yanai T, Tew D P and Handy N C. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Letters, 2004,393, 51−57. https://doi.org/ 10.1016/ j.cplett.2004.06.011
Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermo- chemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc, 2008,120, 215–241. https://doi.org/10.1007/s00214 -007-0310-x
Becke A D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys, 1993, 98, 1372−1377. https://doi.org/ 10.1063/1.464304
Vosko S J, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys, 1980, 58 1200-1211. https://doi.org/10.1139/p80-159
Plaquet A, Guillaume M, Champagne B, Rougier L, Mançois F,Rodriguez V, Pozzo J L, Lucasse D and Castet F J. Investigation on the second-order nonlinear optical responses in the Keto−Enol equilibrium of anil derivatives. J.Phys.Chem. C, 2008,112, 5638−5645. https://doi.org/10.1021/jp711511t
Castet F, Bogdan E, Plaquet A, Ducasse L, Champagne B, Rodriguez V. Reference molecules for nonlinear optics: A joint experimental and theoretical investigation. J. Chem. Phys, 2012,136, 024506. http://dx.doi.org/10.1063/1.3675848
Yang M, Champagne B. Large off-diagonal contribution to the second-order optical
nonlinearities of Λ-shaped molecules. J. Phys. Chem. A, 2003,107, 3942−3951.
https://doi.org/ 10.1021/jp0272567
Frisch M J et al. 2010 Gaussian 09, Revision C. 01.Wallingford CT.
Beverina L, Pagani G. A. Accounts of Chemical Research, 2014,47,319-329. https://doi.org/10.1021/ar4000967