A DFT STUDY OF HYPER-RAYLEIGH SCATTERING (HRS) FIRST HYPERPOLARIZABILITY OF SUBSTITUTED POLYENE: PART (II)

Authors

  • N. S. Labidi Faculté des Sciences et de la Technologie, Département des Sciences de la Matière, Université de Tamanrasset.11000 https://orcid.org/0000-0003-4100-0210

DOI:

https://doi.org/10.4314/jfas.v14i1.12

Keywords:

first hyperpolarizabilities, HRS, D/A Π-conjugated polyene, DFT, MP2

Abstract

Several DFT functionals have been carried out to study the first hyperpolarizabilities βHRS of push-pull polyene as a function the basis sets, of electron correlation, of the size, of the frequency dispersion and the geometry. These calculations confirm the huge effects of electron correlation, the Møller–Plesset (MP2) results reproduces the values of the first hyperpolarizability obtained with the reference CCSD(T) level. Among density functional theory exchange- correlation functionals, B3LYP, M062X, B3P86 and CAM-B3LYP are comparable to the MP2 for characterizing the dynamic first hyperpolarizability. The TDB3LYP/6-31+G* level show that, as increasing the the separation distance (dN···N /Å) and introducing a stronger donor the avereage BLA value decreases and the βHRS increase. In addition, a quantitative relationship was established between the first hyperpolarizability bHRS and the separation distance (dN···N /Å) at MP2, B3LYP and M062X level of theory.

Downloads

Download data is not yet available.

References

Champagne B and. Kirtman B. in Handbook of Advanced Electronic and Photonic

Materials and Devices, H. S.Nalwa (Eds.), New York: Academic Press, 2001, pp. 63

Alexander J T L, Elizabeth F. C. D, Stephen C. R, Tobin J. M. Molecular Design Principles for Magneto-Electric Materials: All-Electric Susceptibilities Relevant to Optimal Molecular Chromophores. The Journal of Physical Chemistry C, 2017, 121, (30), 16491 -16500. https://doi.org/10.1021/acs.jpcc.7b04307

Jialei L, Canbin O, Fuyang H, Wenqing H, Aocheng C. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes and Pigments, 2020, 181, 108509. https:// doi.org/10.1016/ j.dyepig. 2020. 108509

Diego P, Hélio F. Dos Santos. Computational protocol to predict hyper polarizabilities of large π-conjugated organic push–pull molecules. Organic Electronics, 2016, 28,111–117. https://doi.org/10.1016/j.orgel.2015.10.019

Alexander JT L, Tobin J M. A twist on nonlinear optics: understanding the unique response of π-twisted chromophores. Accounts of Chemical Research, 2019, 52, (5),1428 –1438. https://doi.org/10.1021/acs.accounts.9b00077

Oviedo M B, Ilawe NV, Wong B M. Polarizabilities of π-conjugated chains revisited:

Improved results from broken-symmetry range-separated DFT and New CCSD benchmarks.

J. Chem. Theory Comput, 2016, 12, (8), 3593–3602. https://doi.org/10.1021/acs.jctc.6b00360

Liu Y, Yuan Y, Tian X, Yuan J, Sun J. Computational design of p-(dimethylamino)

benzylidene derived push-pull polyenes with high first-hyperpolarizabilities. Phys. Chem.

Chem. Phys, 2020, 22, 5090–5104. https://doi.org/ 10.1039/C9CP05631A

Yanling S, Guochun Y. Non-planar donor–acceptor chiral molecules with large second order optical nonlinearities: 1,1,4,4-Tetracyanobuta-1,3-diene derivatives. J. Phys.Chem A, 2014, 118, (6), 1094–1102. https://doi.org/10.1021/jp4099717

Beverina L, Pagani G A. Π Conjugated zwitterions as paradigm of donor acceptor

building blocks in organic-based materials. Accounts of Chemical Research, 2014, 47, (2),

–329. https://doi.org/10.1021/ar4000967

Lijuan Z, Dongdong Q, Luyang Z, Chao C, Yongzhong B, Wenjun L.Density Functional

Theory Study on Subtriazaporphyrin Derivatives: Dipolar/Octupolar Contribution to the

Second-Order Nonlinear Optical Activity. J. Phys. Chem. A, 2012, 116, 10249–10256.

http:// dx.doi.org/10.1021/jp3079293

Kaushik H, Prasanta K. N. Effect of alkaline earth metal at the single wall CNT mouth on the electronic structure and second hyperpolarizability. Journal of Theoretical and Computational Chemistry, 2016, 15, (05),1650040.https://doi.org/10.1142/S021963361650 0401

Champagne B J, Labidi N S. Second-order nonlinear optical responses of heptahelicene and heptathiahelicene derivatives. Chemical Physics Letters, 2016, 644,195–200. http://dx. doi.org/10.1016/j.cplett.2015.12.008

Meier de Andrade A, Loren Inacio P, Alexandre Camilo Jr. Theoretical investigation of second hyperpolarizability of trans-polyacetylene: Comparison between experimental and theoretical results for small oligomers. J. Chem. Phys, 2015,143, 244906–7.https:// doi.org/10.1063/1.4939083

Himadri C, Giant first hyperpolarizabilities of donor–acceptor substituted graphyne: An ab initio study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 226–230. http://dx.doi.org/10.1016/j.saa.2015.08.021

Labidi N S. Solvent effect on hyper-rayleigh scattering (HRS) first hyperpolarizability of

substituted polyene: part (I). J. Fundam. Appl. Sci, 2021, 13, (3), 1175–1192. http:// dx.doi.org /10.4314/jfas.v13i3.2

Tomasi J, Mennucci B, Ammi R. Quantum mechanical continuum solvation models. Chem. Rev, 2005, 105, (8), 2999–3094. https://doi.org/10.1021/cr9904009

Sekino H, Bartlett R J. Frequency dependent nonlinear optical properties of molecules. J. Chem. Phys, 1986,85,(2), 976–989. https://doi.org/10.1063/1.451255

Van Gisbergen S J A, Snijders J G, Baerends E J. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules. J. Chem. Phys, 1998, 109, (24), 10657–10668. https://doi.org/ 10.1063/1.477763

Becke A D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys, 1993, 98, 5648−5652. https://doi.org/10.1063/1.464913

Zhao Y E, Schultz N and Truhlar D G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J. Chem. Phys, 2005, 123, 161103−4. https://doi.org/10.1063/1.2126975

Iikura H, Tsuneda T, Yanai T, Hirao K. A long-range correction scheme for generalized gradient-approximation exchange functionals. J. Chem. Phys, 2001,115, 3540 − 3544. https :// doi.org/10.1063/1.1383587

Yanai T, Tew D P and Handy N C. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Letters, 2004,393, 51−57. https://doi.org/ 10.1016/ j.cplett.2004.06.011

Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermo- chemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc, 2008,120, 215–241. https://doi.org/10.1007/s00214 -007-0310-x

Becke A D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys, 1993, 98, 1372−1377. https://doi.org/ 10.1063/1.464304

Vosko S J, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys, 1980, 58 1200-1211. https://doi.org/10.1139/p80-159

Plaquet A, Guillaume M, Champagne B, Rougier L, Mançois F,Rodriguez V, Pozzo J L, Lucasse D and Castet F J. Investigation on the second-order nonlinear optical responses in the Keto−Enol equilibrium of anil derivatives. J.Phys.Chem. C, 2008,112, 5638−5645. https://doi.org/10.1021/jp711511t

Castet F, Bogdan E, Plaquet A, Ducasse L, Champagne B, Rodriguez V. Reference molecules for nonlinear optics: A joint experimental and theoretical investigation. J. Chem. Phys, 2012,136, 024506. http://dx.doi.org/10.1063/1.3675848

Yang M, Champagne B. Large off-diagonal contribution to the second-order optical

nonlinearities of Λ-shaped molecules. J. Phys. Chem. A, 2003,107, 3942−3951.

https://doi.org/ 10.1021/jp0272567

Frisch M J et al. 2010 Gaussian 09, Revision C. 01.Wallingford CT.

Beverina L, Pagani G. A. Accounts of Chemical Research, 2014,47,319-329. https://doi.org/10.1021/ar4000967

Downloads

Published

2021-12-02

How to Cite

LABIDI, N. S. A DFT STUDY OF HYPER-RAYLEIGH SCATTERING (HRS) FIRST HYPERPOLARIZABILITY OF SUBSTITUTED POLYENE: PART (II). Journal of Fundamental and Applied Sciences, [S. l.], v. 14, n. 1, p. 229–251, 2021. DOI: 10.4314/jfas.v14i1.12. Disponível em: https://jfas.info/index.php/JFAS/article/view/1170. Acesso em: 30 jan. 2025.

Issue

Section

Articles