DARK MATTER IN THE CENTRAL REGION OF THE SPIRAL GALAXY NGC4321
DOI:
https://doi.org/10.4314/jfas.v11i2.6Keywords:
cosmology, dark matter, galaxyAbstract
We present our results of 12 CO(1-0) transition in the central region of NGC 4321 using the Atacama Large Millimeter and Sub-millimeter Array (ALMA). We found an unaccounted mass of 2.3×109 Mʘ within the central 0.7 kpc of this galaxy. The expected mass of the supermassive black hole (SMBH) in this galaxy is much smaller than the unaccounted mass. The invisible mass is likely caused by dark matter in the central region of the galaxy, indicating a cuspy dark matter profile. We also investigated the Modified Newtonian Dynamics (MOND) as an alternative mechanism to explain the invisible mass. We noted that at the radius of 0.7 kpc of the galaxy, the acceleration is about 1.04×10-7 cm s-2, which is much larger than the critical acceleration a0 ~1.2×10-8 cm s-2 in the MOND theory, suggesting that theory might not be able explain the unseen mass problem in central region of this galaxy.
Downloads
References
[2] Cattaneo A, Salucci P, Papastergis E. Galaxy Luminosity Function and Tully-Fisher Relation: Reconciled through Rotation-curve Studies. Astrophys. J., 2014, 783, 66.
[3] Tan A, Xiao M, Cui X, Chen X, Chen Y, Fang D, Fu C, Giboni K, Giuliani F, Gong H, et al. Dark matter results from first 98.7 days of data from the pandax-ii experiment. Phys. Rev. Lett, 2016, 117 (12), 121303.
[4] Milgrom M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J., 1983, 365–370, doi: 10.1086/161130.
[5] Milgrom M. A modification of the Newtonian dynamics - Implications for galaxies. Astrophys. J., 1983, 371–389, doi:10.1086/161131.
[6] Milgrom M, A modification of the Newtonian dynamics - Implications for galaxy systems. Astrophys. J.,1983, 384, doi:10.1086/161132.
[7] Bekenstein J. Relativistic gravitation theory for the Mond Paradigm. Phys. Rev. D., 2004, 70(8), 083509.
[8] Sanders R H, Verheijen M A W. Rotation curves of Ursa major galaxies in the context of Modified Newtonian Dynamics. Astrophys. J., 1998, 503, 97–108. 255.
[9] Sanders R. The virial discrepancy in clusters of galaxies in the context of Modified Newtonian Dynamics. Astrophys. J. Lett., 1998, 512 (1), L23.
[10] Scarpa R, Marconi G, Gilmozzi R. Using globular clusters to test gravity in the weak acceleration regime. Astron. Astrophys., 2003, 405 (1), L15–L18.
[11] Ferrarese L, Freedman W L, Hill R J, Saha A, Madore B F, Kennicutt Jr R C, Stetson P B, Ford H C, Graham J A, Hoessel J G, et al. The extragalactic distance scale key project. Iv. The discovery of Cepheids and a new distance to M100 using the Hubble Space Telescope. Astrophys. J., 1996, 464, 568.
[12] Ho L C, Filippenko A V, Sargent W L. A search for dwarf”seyfert nuclei. iii. spectroscopic parameters and properties of the host galaxies. Astrophys. J. Suppl. Ser., 1997, 112 (2), 315.
[13] S´ersic J, Pastoriza M. Properties of galaxies with peculiar nuclei. Publ. Astron. Soc. Pac., 1967, 79 (467), 152–155.
[14] Pogge R W. Ionized gas in the nuclear regions of nearby non-seyfert spiral galaxies. Astrophys. J. Suppl. Ser., 1989, 71, 433–453.
[15] Knapen J. Statistical properties of HII regions in the disc of M100. Mon. Not. R. Astron Soc., 1998, 297 (1), 255–264.
[16] Teodoro E D, Fraternali F. 3D barolo: a new 3d algorithm to derive 275 rotation curves of galaxies. Mon. Not. R. Astron Soc., 2015, 451(3), 3021–3033.
[17] Swaters R, Sancisi R, Van Der Hulst J. The HI halo of NGC 891. Astrophys. J., 1997, 491 (1), 140.
[18] Knapen J, Shlosman I, Heller C, Rand R, Beckman J, Rozas M. Kinematics of ionized and molecular hydrogen in the core of M100. Astrophys. J., 2000, 528 (1), 280.
[19] Sandstrom K, Leroy A, Walter F, Bolatto A, Croxall K, Draine B, Wilson C, Wolfire M, Calzetti D, Kennicutt, R., et al. The CO-to-H2 conversion factor and dust-to-gas ratio on kiloparsec scales in nearby galaxies. Astrophys. J., 2013, 777 (1), 5.
[20] Castillo-Morales A, Jim´enez-Vicente J, Mediavilla E, Battaner E. Noncircular motion evidence in the circumnuclear region of M100 (NGC 4321). Mon. Not. R. Astron Soc., 2007, 380 (2), 489–498.
[21] Nishiyama K, Nakai N. Co survey of nearby spiral galaxies with the nobeyama 45-m telescope: I. the data. Publ. Astron. Soc. Jpn., 2001, 53 (5), 713–756.
[22] Rahmani S, Lianou S, Barmby P. Star formation laws in the andromeda galaxy: gas, stars, metals and the surface density of star formation. Mon. Not. R. Astron Soc., 2016, 456 (4), 4128–4144.
[23] Liu L, Gao Y, Greve T R. The global star formation laws of galaxies from a radio continuum perspective. Astrophys. J., 2015, 805 (1), 31.
[24] Tsai A-L, Matsushita S, Nakanishi K, Kohno K, Kawabe R., Inui T, Matsumoto H, Tsuru T G, Peck A B, Tarchi A. Molecular superbubbles and outflows from the starburst galaxy NGC 2146, Publ. Astron. Soc. Jpn., 2009, 61 (2), 237– 250.
[25] Garcıa-Burillo S, Sempere M, Combes F, Neri R. Molecular gas in the barred spiral M100. Astron. Astrophys., 1998, 333, 864–876.
[26] Querejeta M, Meidt S E, Schinnerer E, Cisternas M, Mun˜ozMateos J C, Sheth K, Knapen J, Van De Ven G, Norris M A, Peletier R, et al. The spitzer survey of stellar structure in galaxies (s4g): Precise stellar mass distributions from automated dust correction at 3.6 µm. Astrophys. J. Suppl. Ser., 2015,219 (1), 5.
[27] Meidt S E, Schinnerer E, Van De Ven G, Zaritsky D, Peletier R, Knapen J H, Sheth K, Regan M, Querejeta M, Mun˜oz-Mateos J-C, et al. Reconstructing the stellar mass distributions of galaxies using s4g IRAC 3.6 and 4.5 µm images. ii. the conversion from light to mass, Astrophys. J., 2014, 788 (2),144.
[28] Binney J, Merrifield M. Galactic astronomy, Princeton: Princeton University Press, 1998.
[29] Riffel R A, Ho L C, Mason R, Rodr´ıguez-Ardila A, Martins L, Riffel R, Diaz R, Colina L, Alonso-Herrero A, Flohic H, Gonzalez Martin O, Lira P, McDermid R, Ramos Almeida C, Schiavon R, Thanjavur K, Ruschel-Dutra D, Winge C, Perlman E. Differences between CO- and calcium triplet-derived velocity dispersions in spiral galaxies: evidence for central star formation?. Mon. Not. R. Astron Soc., 2015, 446, 2823–2836.
[30] Mun˜oz-Mateos J, de Paz A G, Boissier S, Zamorano J, Dale D, P´erez-Gonz´alez P G, Gallego J, Madore B, Bendo G, Thornley M, et al. Radial distribution of stars, gas, and dust in sings galaxies. ii. derived dust properties. Astrophys. J., 2009, 701 (2), 1965.
[31] Sarzi M, Rix H-W, Shields J C, McIntosh D H, Ho L C, Rudnick G, Filippenko A V, Sargent W L W, Barth A J. Limits on the Mass of the Central Black Hole in Nearby Bulges. Astrophys. J., 2002, 567, 237–246.
[32] Bottema R, Pestan˜a J L G, Rothberg B, Sanders R H. MOND rotation curves for spiral galaxies with Cepheid-based distances. Astron. Astrophys., 2002, 393, 453–460.
[33] Zlo´snik T Z, Skordis C. Cosmology of the Galileon extension of bekensteins theory of relativistic modified Newtonian dynamics. Phys.Rev.D, 2017, 95 (12), 124023.
[34] Bekenstein J D, Sagi E. Do newtons g and milgroms a vary with cosmological epoch?. Phys.Rev.D, 2008, 77 (10), 103512.
[35] Zhao H, Li B, Bienaym´e O. Modified keplers law, escape speed, and twobody problem in modified Newtonian dynamics-like theories. Phys.Rev.D., 2010, 82 (10), 103001.
[36] Iocco F, Pato M, Bertone G. Testing modified Newtonian dynamics in the milky way, Phys.Rev.D, 2015, 92 (8), 084046.