ISOTOPE SHIFT EFFECTS ON THE GROUND-STATE LEVELS FOR NEUTRAL TIN

Authors

  • L. Özdemir Sakarya University, Department of Physics, 54187 Sakarya, Turkey
  • M. S. Şadoğlu akarya University, Department of Physics, 54187 Sakarya, Turkey

DOI:

https://doi.org/10.4314/jfas.v11i2.10

Keywords:

MCHF method, normal mass shift, spesific mass shift, field shift.

Abstract

Isotope shift effects including mass shift and field shift on the levels for the levels of 3P0,1,2, 1D2 and 1S0 for the ground-state configuration of the neutral tin (Sn I, Z= 50) have been investigated. In calculations, the multiconfiguration Hartree-Fock method within the frame work of Breit-Pauli Hamiltonian has been used. The calculation of isotope effects for tin has been here performed firstly although there are some works on the atomic structure of tin. The results including isotope shift effects on the levels have been discussed, and new energy values have been compared other available works in literature.

Downloads

Download data is not yet available.

References

[1] Karpov V. Ya. and Shpatakovskaya G.V., On the Atomic-Number similarity of the binding energies of electrons in filled shells of Elements of the Periodic Table, JETP, 2017, 124, 369–378.
[2] Gould T., How polarizabilities and C6 coefficients actually vary with atomic volume, J. Chem. Phys., 2017, 145, 084308.
[3] Sierra Porta D., Chirinos M., and Stock M. J., Comparison of variational solutions of the Thomas-Fermi model in terms of the ionization energy, Rev. Mex. Fis., 2016, 62(6), 538–542.
[4] Malykhanov Yu. B., Evseev S. V.,and Gorshunov M.V., Calculation of open p-shell atoms in the algebraic approach of the Hartree-Fock method, J. Appl. Spectrosc. 2012, 79, 1–10.
[5] Sharma L., Bharti S., and Srivastava R., Electron impact excitation of tin, Eur. Phys. J. D, 2017, 71,121.
[6] Iqbal J., Ahmed R., Rafique M., Anwar-ul-Haq M., and Baig M. A., Spatial diagnostics of the laser-produced tin plasma in air, Laser Phys. 2016, 26, 076001.
[7]Jiang L.-Y., Wang Q., Pei S. –H., Feng Y. –Y., Zhang J. -X, Yu X. -C, and Dai Z. -W, Experimental branching fractions, transition probabilities, and oscillator strengths in Sn I, J. Opt. Soc. Am. B, 2012, 29, 1486–1489.
[8] A. Alonso-Medina A., A spectroscopic study of laser-induced tin-lead plasma: Transition probabilities for spectral lines of Sn I, Spectrochim. Acta, Part B, 2010, 65, 158–166, 2010.
[9] Naze C., Gaidamauska E., Gaigalas G., Godefroid M., and Jönsson P., RIS3: A program for relativistic isotope shift calculations, Comput. Phys. Commun., 1984, 184, 2187, 2013.
[10] King W. H. Isotope Shift in Atomic Spectra, Plenum Press. New York, 1984.
[11] Cheal B., Cocolios T.E., and Fritzche S., Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations, Phys. Rev. A, vol. 86, pp. 042501, 2012.
[12] Naze C., Li J. G., and Godefroid M., Theoretical isotope shifts in neutral barium, Phys. Rev. A, 2015, 91, 032511.
[13] C. F. Fischer C. F., Brage T. and Jönsson P. Computational Atomic Structure. IOP, Bristol and Philadephia, 1997.
[14] Fischer C. F., the MCHF atomic-structure package”, Comput. Physics Commun., 2000, 128, 635-636.
[15] Aufmuth P., Heilig K., and Steudel A., Changes in mean-square nuclear charge radii from optical isotope, At. Data and Nucl. Data Tables, 1987, 37, 455-490.
[16] Kramida A., Ralchenko Y., Reader J., and NIST ASD Team (2015). NIST Atomic Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2017, May 18]. National Institute of Standards and Technology, Gaithersburg, MD.

Downloads

Published

2019-04-10

How to Cite

ÖZDEMIR, L.; ŞADOĞLU, M. S. ISOTOPE SHIFT EFFECTS ON THE GROUND-STATE LEVELS FOR NEUTRAL TIN. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 2, p. 692–698, 2019. DOI: 10.4314/jfas.v11i2.10. Disponível em: https://jfas.info/index.php/JFAS/article/view/176. Acesso em: 30 jan. 2025.

Issue

Section

Articles