THE EFFECT OF SEVERAL PARAMETERS ON THE PERFORMANCE of CuInS2-BASED SOLAR CELLS USING THE SCAPS-1D SOFTWARE
DOI:
https://doi.org/10.4314/jfas.v11i2.11Keywords:
CuInS2, solar cell, SCAPS-1D, photovoltaic, efficiencyAbstract
In this work, we have used one dimensional solar cells simulator SCAPS-1D (Solar Cell Capacitance Simulator) to design solar cells based on CuInS2 as the absorber material and study their device performances. Solar cells having a typical structure Al/ZnO:Al/CdS/CuInS2/Mo have been modeled. We focus on studying effects of varying band gap and thickness of CuInS2 absorber layer on the performance of the CuInS2 based solar cells. And also, various replacements for conventional cadmium sulphide (CdS) buffer layer, such as ZnSe and In2S3 based buffer layers have been studied to find out the optimum choice. The photovoltaic parameters (short-circuit current density (Jsc), open-circuit voltage (Vco), fill factor (FF) and effciency (η)) have been calculated from the current density-voltage curves. In this study, a simulated effciency of 21.93 % has been obtained with Vco of 0.94 V, Jsc of 27.64 mA/cm2 and FF of 84.25 % for the CuInS2 solar cell with an absorber layer band gap of 1.40 eV, absorber thickness of 2µm and In2S3 buffer layer. The analysis made from this numerical simulation has revealed the good structure Al/ZnO:Al/In2S3/CuInS2/Mo solar cell.
Downloads
References
[2] M.A. Sangamesha, K. Pushpalatha, G.L. Shekar, Effect of Co Doping on CIS2 Thin Films, Chinese Journal of Physics, 56 (2018) 1147-1157, https://doi.org/10.1016/j.cjph.2018.04.019
[3] M.X. Zhuang, A.X. Wei, Y. Zhao, J. Liu, Z.Q. Yan, Z. Liu, Morphology-controlled growth of special nanostructure CuInS2 thin films on an FTO substrate and their application in thin film solar cells, International Journal of Hydrogen Energy 40 (2015) 806-814, http://dx.doi.org/10.1016/j.ijhydene.2014.09.042
[4] Nurdan D. Sankir, Erkan Aydin, Hulya Unver, Ezgi Uluer, Mehmet Parlak, Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells, Solar Energy 95 (2013) 21-29, http://dx.doi.org/10.1016/j.solener.2013.05.024
[5] Stephen T. Connor, Ching-Mei Hsu, Benjamin D. Weil, Shaul Aloni, Yi Cui, Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods, J. AM. CHEM. SOC. 131 (2009) 4962-4966, DOI: 10.1021/ja809901u
[6] Amir Hossein Cheshme Khavar, Ali Reza Mahjoub, Nima Taghavinia, Improved performance of low cost CuInS2 superstrate-type solar cells using Zinc assisted Spray pyrolysis processing, J. Phys. D: Appl. Phys. 50 (2017) 485103, https://doi.org/10.1088/1361-6463/aa9253
[7] Kai Siemer, Jo Klaer, Ilka Luck, Jurgen Bruns, Reiner Klenk, Dieter Braunig, Effcient CuInS2 solar cells from a rapid thermal process (RTP), Solar Energy Materials & Solar Cells 67 (2001) 159-166, https://doi.org/10.1016/S0927-0248(00)00276-2
[8] Martin A. Green, Yoshihiro Hishikawa, Ewan D. Dunlop, Dean H. Levi, Jochen HohlEbinger, Anita W.Y. HoBaillie, Solar cell effciency tables (version 52), Prog Photovolt Res Appl. 26 (2018) 427-436. https://doi.org/10.1002/pip.3040
[9] Philip Jackson, Dimitrios Hariskos, Roland Wuerz, Oliver Kiowski, Andreas Bauer, Theresa Magorian Friedlmeier, Michael Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record effciencies up to 21.7%, Phys. Status Solidi RRL, 9 (2015) 28-31, DOI 10.1002/pssr.201409520
[10] Ryousuke Ishikawa, Tomoya Oya, Tonan Yamada, Takahiro Nomoto, Nozomu Tsuboi, Highly oriented CuInS2 thin films on graphene electrodes for solar-cell applications, Thin Solid Films 634 (2017) 1-5, http://dx.doi.org/10.1016/j.tsf.2017.05.006
[11] Mohamed Fathi, Mahfoud Abderrezek, Farid Djahli, Mohammed Ayad, study of thin film solar cells in high temperature condition, Energy Procedia 74 (2015) 1410-1417. https://doi.org/10.1016/j.egypro.2015.07.788
[12] A. Mouhoub, A. Bouloufa, K. Djessas, A. Messous, Analytical modeling and optimization of original bifacial solar cells based on Cu(In,Ga)Se2 thin films absorbers, Superlattices and Microstructures, 122 (2018) 434-443, https://doi.org/10.1016/j.spmi.2018.06.068
[13] Kihwan Kim, Jihye Gwak, Seung Kyu Ahn, Young-Joo Eo, Joo Hyung Park, Jun-Sik Cho, Min Gu Kang, Hee-Eun Song, Jae Ho Yun, Simulations of chalcopyrite/c-Si tandem cells using SCAPS-1D, Solar Energy 145 (2017) 52-58, https://doi.org/10.1016/j.solener.2017.01.031
[14] Nima Khoshsirat, Nurul Amziah Md Yunus, Mohd Nizar Hamidon, Suhaidi Shafie, Nowshad Amin, Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS, Optik – International Journal for Light and Electron Optics 126 (2015) 681-686, https://doi.org/10.1016/j.ijleo.2015.02.037
[15] Hossien Movla, Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis, Optik 125 (2014) 67-70, https://doi.org/10.1016/j.ijleo.2013.06.034
[16] M.Mostefaoui, H.Mazari, S.Khelifi, A.Bouraiou, R.Dabou, Simulation of High Effciency CIGS Solar Cells with SCAPS-1D Software, Energy Procedia 74 (2015) 736-744,
https://doi.org/10.1016/j.egypro.2015.07.809
[17] Marc Burgelman, Johan Verschraegen, Stefaan Degrave, Peter Nollet, Modeling Thin-film PV Devices, Prog. Photovolt: Res. Appl. 12 (2004) 143-153, https://doi.org/10.1002/pip.524
[18] J.Verschraegen, M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS, Thin Solid Films 515 (2007) 6276-6279, https://doi.org/10.1016/j.tsf.2006.12.049
[19] Koen Decock, Samira Khelifi, Marc Burgelman, Modelling multivalent defects in thin film solar cells, Thin Solid Films 519 (2011) 7481-7484, https://doi.org/10.1016/j.tsf.2010.12.039
[20] Xunzhong Shang, Zhiqiang Wang, Mingkai Li, Lei Zhang, Jingang Fang, Jiali Tai, Yunbin He, A numerical simulation study of CuInS2 solar cells, Thin Solid Films 550 (2014) 649-653, https://doi.org/10.1016/j.tsf.2013.10.047
[21] Puvaneswaran Chelvanathan, Mohammad Istiaque Hossain, Nowshad Amin, Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS, Current Applied Physics 10 (2010) S387-S391, https://doi.org/10.1016/j.cap.2010.02.018
[22] Mohamed Moustafa, Tariq AlZoubi, Effect of the n-MoTe2 interfacial layer in cadmium telluride solar cells using SCAPS, Optik 170 (2018) 101-105, https://doi.org/10.1016/j.ijleo.2018.05.112
[23] Nima Khoshsirat, Nurul Amziah Md Yunus, Numerical simulation of CIGS thin film solar cells using SCAPS-1D, Sustainable Utilization and Development in Engineering and Technology (CSUDET), 2013 IEEE Conference, DOI:10.1109/CSUDET.2013.6670987.
[24] O.K. Simya, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program, Superlattices and Microstructures 82 (2015) 248-261, https://doi.org/10.1016/j.spmi.2015.02.020.
[25] Cziprok Claudia Daniela, F.F. Popescu, Pop Alexandru Ioan, Variu Andrei, Conceptual Maps and Integrated Experiments for Teaching/Learning Physics of Photonic Devices, Procedia-Social and Behavioral Sciences 191 (2015) 512-518, https://doi.org/10.1016/j.sbspro.2015.04.284
[26] Liu Changshi, Liu Wen Li, Precise determination of photoelectric current via voltage between anode and cathode, intensity and frequency of incident light, Optik - International Journal for Light and Electron Optics 127 (2016) 7359-7366, https://doi.org/10.1016/j.ijleo.2016.05.045
[27] Roland Scheer, HansWerner Schock, Photovoltaic Properties of Standard Devices, Chalcogenide Photovoltaics, Wiley-Vch Verlag & Co. Weinheim, Germany, (2011) 277-304,
https://doi.org/10.1002/9783527633708.ch6
[28] Adeyinka D. Adewoyin, Muteeu A.Olopade, Olusola O.Oyebola, Micheal A.Chendo, Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D, Optik 176 (2018) 132-142, https://doi.org/10.1016/j.ijleo.2018.09.033
[29] Chia-Hua Huang, Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling, Journal of Physics and Chemistry of Solids 69 (2008) 330-334, https://doi.org/10.1016/j.jpcs.2007.07.093
[30] A. Kotbi, B. Hartiti, A. Ridah, P. Thevenin, Characteristics of CuInS2 thin films synthesizes by chemical spray pyrolysis, Optical and Quantum Electronics 48 (2016) 1-9, doi:10.1007/s11082-015-0344-6
[31] A. Bouloufa,K. Djessas, A. Zegadi, Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D, Thin solide films 515 (2007) 6285-6287, doi: 10.1016/j.tsf.2006.12.110