HIGH SENSITIVITY DETECTION OF THE STATOR SHORT-CIRCUIT FAULTS IN INDUCTION MOTOR USING HILBERT PARK’S VECTOR PRODUCT

Authors

  • A. Allal Department of electrical engineering, Echahid Hamma Lakhdar University of El-Oued, Algeria .
  • B. Chetate Research Laboratory on the Electrification of Industrial Enterprises, University of M'Hamed Bougara of Boumerdes, Algeria

DOI:

https://doi.org/10.4314/jfas.v11i2.29

Keywords:

Hilbert transform .Induction motor Diagnosis .Inter-turn short- circuit .Park transform Spectral analysis.

Abstract

In this paper, a new approach for induction motor diagnosis, which called: Hilbert Park’s Vector Product Approach (HPVPA), is proposed, this processes offers unprecedented a high sensitivity in case of stator faults. In order to highlight the effectiveness of this method, this paper included with an important comparison between the proposed method and the proposed techniques in the recently research works; such as: Motor Square Current Signature Analysis (MSCSA), Park's Vector Square Modulus (PVSM), Park’s Vector Product Approach (PVPA), Park-Hilbert “P-H” ( PVSMP-H) and the classical method: Motor Current Signature Analysis (MCSA). The proposed approach bases on three essential steps: firstly, the Hilbert transform of the three phases currents will be aplicated, and then their instantaneous amplitudes will be extracted. Secondly, their current Park's vector components will be reduced. Finally, we apply the mathematical product of its two current Park’s vector components is applicated.

Downloads

Download data is not yet available.

References

1. M .Blodt, P. Granjon, B . Raison, et al.,models for bearing damage detection in induction motors using stator current monitoring, IEEE Trans. Ind. Electron.,Vol 55, (No. 4), 2008, p 1813- 1822. https://doi.org/10.1109/TIE.2008.917108
2. K. Holmberg, A . Adgar,A. Arnaiz , et al, (Eds.) .E-maintenance. London : Springer -Verlag 2010.
3. E. Lughofer, E. P. Klement,Model-based fault detection in multi-sensor measurement systems, Technical report Flll/Tr/0303, Johannes Kepler University Linz, Austria.
4. S. Ben Salem , K. Bacha , Chaari. A, Support vector machine-based decision for induction motor fault diagnosis using air-gap torque frequency response, International Journal of Computer Applications, Vol 38 (No.5),2012,p 27-33.
DOI: 10.5120/4606-6812.
5. S. Ben Salem,K. Bacha , Chaari. A ,Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform ,ISA Trans., Vol 51(No.5),2012, p 566–572.
https://doi.org/10.1016/j.isatra.2012.06.002
6. T. Sribovornmongkol ,Evaluation of motor online diagnosis by FEM simulations, Master’s Thesis ,Royal Institute of Technology Stockholm, Sweden , 2006.
7. K. Bacha, S. Ben Salem, A. Chaari , An improved combination of Hilbert and Park transforms for fault detection and identification in three-phase induction motors , Electrical Power and Energy Systems ,Vol 43 (No.1),2012, p1006–1016. https://doi.org/10.1016/j.ijepes.2012.06.056
8. M. Sahraoui , A. Ghoggal, S. Guedidi , et al. ,Detection of inter-turn short-circuit in induction motors using Park–Hilbert method, International Journal of System Assurance Engineering and Management , Vol 5 (No.3),2014,p 337-351.
DOI: 10.1007/s13198-013-0173-6
9. M. Sahraoui , Etude comparative des méthodes de diagnostic des machines asynchrones (Comparative study of the methods of diagnosis in the asynchronous machines), Thesis for the degree of Doctor of Science, Biskra university ,Algeria, 2010.(in French).
10. M. Sahraoui , S. E. Zouzou, A. Ghoggal ,et al. ,A new method to detect inter-turn short- circuit in induction motors,19nd ed., International conference on Electrical Machine (ICEM,2010), Sept ,2010,(Rome,Italy), IEEE, 2010 ,p 1-6.
https://doi.org/10.1109/ICELMACH.2010.5607854
11. V. F. Pires, M. Kadivonga , J. F. Martins ,et al. ,Motor square current signature analysis for induction motor rotor diagnosis , Measurement , Vol 46 (No.2), 2013, p 942–948. https://doi.org/10.1016/j.measurement.2012.10.
12. I. Aydin, M. Karakose, E. Akin ,A new method for early fault detection and diagnosis of broken rotor bars, Energy Conversion and Management, Vol 52 (No.4) , 2011, P 1790–1799 https://doi.org/10.1016/j.enconman.2010.11.018
13. A. Allal, B. Chetate , A new and best approach for early detection of rotor and stator faults in induction motors coupled to variable loads,Frontiers in Energy, Vol 10 (No.2),2016, P 176-191.DOI: 10.1007/s11708-015-0386-2
14. A. Allal, Nouvelles méthodes et techniques de diagnostic des machines asynchrones à rotor en cage d’écureuil (New methods and diagnostic techniques asynchronous machines of squirrel cage rotor) ), Thesis for the degree of Doctor of Science, Boumerdes university, Algeria, 2017.(in French).
15. M. Boucherma, M. Y. Kaikaa ,A. Khezzar , Park model of squirrel cage induction machine including space harmonics effect, Journal of Electrical Engineering , Vo l 57 (No.4), 2006, p 193-199 .
16. J. Huppunen ,High-speed solid-rotor induction machine electromagnetic calculation and desing,Thesis for the degree of Doctor of Science, Lappeenranta University of Technology, Finland, 2004.
17. G. Joksimović, J. Riger , T. Wolbank , et al.,Stator line current spectrum content of a healthy cage rotor induction machine, In Diagnostics for Electric Machines, Power Electronics & Drives (SDEMPED), IEEE International Symposium on. Sept, IEEE , 2011,p 113-118. https://doi.org/10.1109/DEMPED.2011.6063610
18. S. E. Zouzou. , M. Sahraoui, A. Ghoggal, et al. ,Detection of inter- turn short-circuit and broken rotor bars in induction motors using the partial relative indexes: application on the MCSA, 19nd ed., International conference on Electrical Machine (ICEM,2010), Sept ,2010,(Rome,Italy), IEEE, 2010 ,p 1-6. https://doi.org/10.1109/ICELMACH.2010.5607874
19. R. Kechida, A. Menacer, , H. Talhaoui , Approach signal for rotor fault detection in induction Motors,Journal of failure analysis and prevention, Vol 13 (No.3), 2013,p 346-352.
20. G. Didier, E. Ternisien, O. Caspary, et al. , A new approach to detect broken rotor bars in induction machines by current spectrum analysis, Mechanical Systems and Signal Processing,Vol 21(No.2), 2007, p 1127-1142. https://doi.org/10.1016/j.ymssp.2006.03.002
21. M. U. Petushkov, Analysis of defects in the rotor asynchronous motor during star, International Journal of applied and fundamental research , (No.1), 2013, p 1-1.
22. A. Allal , Grandeurs non invasives pour le diagnostic des machines asynchrones (Non- Invasive Quantities for Diagnosis of Asynchronous Machines), Thesis for the degree of Magister , University of Sétif, Algeria, 2010.(in French).
23. A. B. Amar ,Direct Torque Control of a Doubly Fed Induction Generator, International Journal of Energetica, Vol 2 (No.1), 2017 ,p 11-14.
24. J. Zarei , J. Poshtan , An advanced Park's vectors approach for bearing fault detection, Tribol. Int., Vol 42(No.2), 2009, p 213-219. https://doi.org/10.1016/j.triboint.2008.06.002
25. A. Kumar ,A new method for early detection of inter-turn shorts in induction motors , 2nd International Conference on Power and Energy Systems ,2012 , (Singapore), IACSIT Press,2012, vol. 56, p. 41..
26. A. Djebala,N. Ouelaa , C. Benchaabane , et al. , Application of the wavelet multi- resolution analysis and Hilbert transform for the prediction of gear tooth defects, Meccanica, Springer Netherlands, Vol 47 (No.7), 2012, p 1601-1612. DOI: 10.1007/s11012-012-9538-1
27. S. K. Ahamed , M. Mitra , S. Sengupta ,et al., Identification of mass-unbalance in rotor of an induction motor through envelope analysis of motor starting current at no load, Journal of Engineering Science and Technology Review , Vol 5 (No.1), 2012 ,p 83-89 .
28. A. Allal , B. Chetate , D. Benattous ,The Instantaneous Power Approach for Rotor Cage Fault Diagnosis in Induction Motor, 6 th symposium on Hydrocarbons and chemistry ISHC6,2012,( Zeralda , Algiers ) .
29. Z. Glowacz, J. Kozik , Detection of synchronous motor inter-tern faults based on spectral analysis of Park’s vector, Arch. Metall. Mater., Vol 58 (No.1), 2013 ,p 19-23.
https://doi.org/10.2478/v10172-012-0144-y
30. L. Qi , S. Woodruff , L. Qian , et al. , Eds.Prony analysis for time – Varying harmonics,Time-Varying Waveform Distortions in Power Systems, Edited by Paulo Fernando Ribeiro, JohnWiley & Sons, 2009..
31. J. Cusidó, L. Romeral , J. A. Ortega , et al. ,Signal Injections as a Fault Detection Technique, Sensors Vol 11(No.3), 2011, p 3356-3380. http://dx.doi.org/10.3390/s110303356
32. G. Didier, E. Ternisien ,O. Caspary, et al., Fault detection of broken rotor bars in induction motor using a global fault index, IEEE Trans. Ind. Appl., Vol 42 (No.1), 2006 ,p 79-88.

Downloads

Published

2019-04-29

How to Cite

ALLAL, A.; CHETATE, B. HIGH SENSITIVITY DETECTION OF THE STATOR SHORT-CIRCUIT FAULTS IN INDUCTION MOTOR USING HILBERT PARK’S VECTOR PRODUCT. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 2, p. 994–1022, 2019. DOI: 10.4314/jfas.v11i2.29. Disponível em: https://jfas.info/index.php/JFAS/article/view/297. Acesso em: 30 jan. 2025.

Issue

Section

Articles