LINEAR ANNULAR ANTENNAS ARRAY DESIGN BY EVOLUTIONARY ALGORITHMS: A COMPARATIVE STUDY

Authors

  • Hichem Chaker RCAM Laboratory, Department of electronics, Faculty of electrical engineering, University Djillali Liabes, Sidi Bel Abbès, Algeria
  • Abri Mehadji Department of Telecom, Faculty of Technology, University Abou Bekr Belkaid, Tlemcen, Algeria
  • Hadjira Badaoui Department of Telecom, Faculty of Technology, University Abou Bekr Belkaid, Tlemcen, Algeria

DOI:

https://doi.org/10.4314/jfas.1118

Keywords:

Ring microstrip antenna; Linear Antenna Arrays; Genetical swarm optimization GSO; Adaptive particle swarm optimization APSO; TM11 and TM12 modes.

Abstract

This paper exposes a comparative study that was made between the adaptive particle swarm optimization (APSO) and the hybrid model genetical swarm optimizer approaches (GSO) for the synthesis of 1-D equally spaced annular ring antenna arrays for both TM11 and TM12 modes. The synthesis of 1-D uniform antenna arrays is designed as a mono-objective problem. The employed optimization techniques are compared in terms of convergence rate and side lobes level reduction.  Several original numerical results are provided to demonstrate the performance of the proposed techniques. The results reveal that the suggested array antenna synthesis approach using genetical swarm optimizer outperforms the adaptive particle swarm optimization in terms of side lobes level reduction and convergence rate.

Downloads

Download data is not yet available.

References

Chaker H, Null Steering and Multi-beams Design by Complex Weight of antennas Array with the use of APSO-GA. WSEAS TRANS COMMUN., 2014, 13(2):99–108

Wang W B, Feng Q.Y, and Liu D. Synthesis of Thinned Linear and Planar Antenna Arrays using Binary PSO Algorithm. PR ELECTROMAGN RES., 2012, 127(1):371-387, https://doi.org/10.2528/PIER12020301

Chaker H, Genetical Swarm Optimizer for Synthesis of Multibeam Linear Antenna Arrays. PR ELECTROMAGN RES C., 2015, 60 (1), 137-146,

https://doi.org/10.2528/PIERC15110206

Chatterjee S, Synthesis of linear array using Taylor distribution and Particle Swarm Optimization, INT. J. ELECT., 2015, 102(3), 514–528,

https://doi.org/10.1080/00207217.2014.905993

CHAKER H, Abri M, and Badaoui H. Hybrid Evolutionary Algorithm Genetical Swarm Optimization for 1-D and 2-D Annular Ring Unequally Spaced Antennas Arrays Synthesis, ELECTROMAGNETICS., 2016, 36(8), 1–19,

https://doi.org/10.1080/02726343.2016.1236008

Grimaccial F, Mussettal M, Pirinoli P, and Zichl R. E, Genetical Swarm Optimization (GSO): a class of Population-based Algorithms for Antenna Design, IEEE INT CONF COMM ELECT, 2006, 467-471, https://doi.org/10.1109/CCE.2006.350871

CHAKER H, Abri M, and Badaoui H. Multi-beam Ring Antenna Arrays Synthesis by The Application of Adaptive Particle Swarm Optimization, PR ELECTROMAGN RES M., 2016, 50(1), 169–181, https://doi.org/10.2528/PIERM16062202

Chew W C, A Broad-Band Annular-Ring Microstrip Antenna, IEEE T ANTENN PROPAG., 1982, 30(5), 918–922

David M, Rigorous Analysis of Probe-Fed Printed Annular Ring Antennas, IEEE T ANTENN PROPAG., 1999, 47(2), 384–388. https://doi.org/10.1109/8.761079

Bhartia P. Bahl I, Garg R. Ittipiboon A. (2nd ed.) Microstrip Antenna Design Handbook. Artech House Antennas and Propagation Library, 2000.

Abri M. Boukli-hacene N and Bendimerad F.T. Synthesis of ring printed antennas arrays: Optimization by the genetic algorithm, INT J MODEL SIMUL., 2008, 28(2), 174–181

Ibarra M. Panduro M A, and Andrade A G. Differential Evolution Multi-Objective for Optimization of Isoflux Antenna Arrays. IETE TECH REV., 2016, 33(2), 105-114. https://doi.org/10.1080/02564602.2015.1049222

Panduro M A, Brizuela C A. Evolutionary multi-objective design of non-uniform circular phased arrays, INT J COMPUT MATH ELEC ELECTRON ENG., 2008, 27( 2), 551 – 566.

Owen P, Mason J.C. the use of linear programming in the design of antenna patterns with prescribed nulls and other constraints, INT J COMPUT MATH ELEC ELECTRON ENG., 1984, 3(4), 201 – 215.

Deng H, Li X, Sun L, Yang S. Minimizing sidelobe levels and facilitating null placements of nonlinear antenna arrays using an improved particle swarm optimization method, INT J COMPUT MATH ELEC ELECTRON ENG., 2013, 33(1/2), 65-73. https://doi.org/10.1108/COMPEL-11-2012-0334

He G. Wu B. Unified particle swarm optimization with random ternary variables and its application to antenna array synthesis, J ELECTROMAGNET WAVE., 2014, 28(6). 752-764, https://doi.org/10.1080/09205071.2014.888959

Djennas S A. Benadda B. Merad L, and Bendimerad F T. Conformal antennas arrays radiation synthesis using immunity tactic, INT J COMPUT MATH ELEC ELECTRON ENG., 2014, 33(3), 1017-1037.

Tej R. Kavya K.C.S, & Kotamraju S.K. Synthesis of phased array antenna for side lobe level reduction using the differential evolution algorithm. Int J Speech Technol., 2020, 23, 337–342. https://doi.org/10.1007/s10772-020-09701-2

Abri M. Boukli-hacene N and Bendimerad F T. Ring Printed Antennas Arrays Radiation Application to Multibeam, presented at the Mediterranean Microwave Symposium, Marseille, France, June. 1-3, 2004.

Abri M. Application du recuit simulé à la synthèse d'antennes en réseau constituées d'éléments annulaires imprimés, ANN TELECOMMUN., 2005, 60(11), 1422–1438.

XF Xie. WJ Zhang, and ZL Yang. Adaptive Particle Swarm Optimization on Individual Level, IEEE IC DIGIT SIG PROC., 2002, 1215-1218.

https://doi.org/10.1109/ICOSP.2002.1180009

Kennedy J. The particle swarm: social adaptation of knowledge. IEEE IC EVOL COMPUTAT., 1997, 303-308 https://doi.org/10.1109/ICEC.1997.592326

Eberhart R. Shi Y. Particle swarm optimization: developments, applications and resources. IEEE IC EVOL COMPUTAT., 2001, 81-86,

https://doi.org/10.1109/CEC.2001.934374

Villegas F J. Parallel Genetic-Algorithm Optimization of Shaped Beam Coverage Areas Using Planar 2-D Phased Arrays. IEEE T ANTENN PROPAG., 2007, 55(6), 1745-1753, https://doi.org/10.1109/TAP.2007.898601

Chaker H. Badaoui H. Abri M, and Benadla I. Efficient synthesis of dual band selective filters using evolutionary methods in a 1D photonic crystal slab for near infrared applications. J COMPUT ELECTRON., 2020, 19(1), 1-6, https://doi.org/10.1007/s10825-019-01439-8

Downloads

Published

2022-04-30

How to Cite

CHAKER, H.; MEHADJI, A.; BADAOUI, H. LINEAR ANNULAR ANTENNAS ARRAY DESIGN BY EVOLUTIONARY ALGORITHMS: A COMPARATIVE STUDY. Journal of Fundamental and Applied Sciences, [S. l.], v. 14, n. 2, p. 368–382, 2022. DOI: 10.4314/jfas.1118. Disponível em: https://jfas.info/index.php/JFAS/article/view/344-359. Acesso em: 31 jan. 2025.

Issue

Section

Articles