EXTRUDED POLY(ETHYLENE–CO–VINYL ALCOHOL) COMPOSITE FILMS REINFORCED WITH CELLULOSIC FIBERS ISOLATED FROM TWO LOCAL ABUNDONATES PLANTS

Authors

  • L. Benchikh Laboratoire de Physico-Chimie des Hauts Polymères, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif 1, Algérie
  • A. Merzouki Laboratoire de Physico-Chimie des Hauts Polymères, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif 1, Algérie
  • Y. Grohens Institut de Recherche Dupuy de Lôme, UMR CNRS 6027, Université de Bretagne Sud, Lorient, France
  • I. Pellin Institut de Recherche Dupuy de Lôme, UMR CNRS 6027, Université de Bretagne Sud, Lorient, France

DOI:

https://doi.org/10.4314/jfas.v12i1.5

Keywords:

El DISS fibers, El Retma fibers, cellulose, biocomposites

Abstract

El DISS and El Retma fibers are in abundance in North Africa, collected from Setif, Algeria and have been treated to isolate cellulose fibers with toluene-ethanol and HNO3 to improve their dispersion into EVOH matrix. SEM micrographs and FTIR analyses of the treated fibers confirmed the elimination of non cellulosics materials and thier cristallinity was estimated by DRX. Thermal analyses by TGA indicate a slight improvement compared to the raw fibers.

Composites were also prepared by incorporing the cellulosic fibers in EVOH matrix. FTIR results and water absorption behavior indicate a reaction between the treated fiber and EVOH matrix by forming hydrogen bonds. Thermal properties of the composites reported by DSC results decreased compared to neat EVOH. The addition of cellulosic fibers led to an increases in the loss and storage modulus and melt viscosity of the composites.

Downloads

Download data is not yet available.

References

[1] Liu W, Wang Y J, Sun Z. Effects of Polyethylene-Grafted Maleic Anhydride (PE-gMA) on Thermal Properties, Morphology, and Tensile Properties of Low-Density Polyethylene (LDPE) and Corn Starch Blends. J. APPL. POLYM. SCI. 2003, 88, 2904 –2911. https://doi.org/10.1002/app.11965
[2] Siqueira G, Bras J, Dufresne A. Cellulose Whiskers versus Microfibrils : Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules. 2009, 10, (2). https://doi.org/10.1021/bm801193d
[3] Kamel S. Nanotechnology and its applications in lignocellulosic composites, a mini review. EXPRESS POLYM LETT. 2007, 1, (9), 546–575. https://doi.org/10.3144/expresspolymlett.2007.78
[4] Prachayawarakorn J, Sangnitidej P, Boonpasith P. Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr. Polym. 2010, 81, 425–433. https://doi.org/10.1016/j.carbpol.2010.02.041
[5] Chandra R, Rustgi R. Biodegradation of maleated linear low-density polyethylene and starch blends. POLYM DEGRAD STABIL. 1997, 56, 185-202. https://doi.org/10.1016/S0141-3910(96)00212-1
[6] Marcovich N E, Villar M A. Thermal and Mechanical Characterization of Linear Low Density Polyethylene/Wood Flour Composites. J. APPL. POLYM. SCI. 2003, 90, 2775–2784. https://doi.org/10.1002/app.12934
[7] Xiong Ch, Rongrong Q, Yanling W. Wood-Thermoplastic Composites from Wood Flour and High-Density Polyethylene. J. APPL. POLYM. SCI. 2009, 114, 1160–1168. https://doi.org/10.1002/app.30707
[8] Siqueira G, Bras J, Dufresne A. Cellulosic Bionanocomposites : A Review of Preparation, Properties and Applications. Polymers. 2010, 2, 728-765. https://doi.org/10.3390/polym2040728
[9] Ambjornsson H A, Schenzel K, Germgard U. Carboxylmethyl cellulose produced at different mercerization conditions and characterized by NIR FT Raman spectroscopy in combination with multivariate analytical methods. Bioressources. 2013, 8, (2), 1918-1932. https://doi.org/10.15376/biores.8.2.1918-1932
[10] Ozdemir T, Mengeloglu F. Some Properties of Composite Panels Made from Wood Flour and Recycled Polyethylene. Int J Mol Sci. 2008, 9, (12), 2559–2569. https://doi.org/10.3390/ijms9122559
[11] Lai S M, Yeh F C, Wang Y, Chan H C, Shen H F. Comparative Study of Maleated Polyolefins as Compatibilizers for Polyethylene/Wood Flour Composites. J. APPL. POLYM. SCI. 2003, 87, 487–496. https://doi.org/10.1002/app.11419
[12] Myers G E, Chahyadi I S, Gonzalez C, Coberly C A, Ermer D S. Wood Flour and Polypropylene or High Density Polyethylene Composites : Influence of Maleated Polypropylene Concentration and Extrusion Temperature on Properties. Intern. J. Polymeric Mater., 1991, 15, 171-186. https://doi.org/10.1080/00914039108041082
[13] Bengtsson M, Gatenholm P, Oksman K. The effect of crosslinking on the properties of polyethylene/wood flour composites. Compos Sci Technol. 2005, 65, 1468–1479. https://doi.org/10.1016/j.compscitech.2004.12.050
[14] Bengtsson M, Oksman K. The use of silane technology in crosslinking polyethylene/wood flour composites. Compos Part A Appl Sci Manuf. 2006, 37, 752–765. https://doi.org/10.1016/j.compositesa.2005.06.014
[15] Wang Y, Yeh F C, Lai S M, Chan H C, Shen H F. Effectiveness of Functionalized Polyolefins as Compatibilizers for PolyethyIene/Wood FIour Composites. POLYM ENG SCI. 2003, 43, (4), 933-945. https://doi.org/10.1002/pen.10077
[16] Pereira P H F, Morsyleide de Freitas R, Cioffi M O H, Benini K C C C, Milanese A C, Voorwald H C J, Mulinari D R. Vegetal fibers in polymeric composites : a review. Polímeros. 2015, 25, (1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722
[17] Morsyleide F R, Bor-sen Ch B, Medeiros E S, Wood D F, Williams T G, Mattoso L H C, Orts W J, Imam S H. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour. Technol. 2009, 100, 5196–5202. http://dx.doi.org/10.1016/j.biortech.2009.03.085
[18] Raabe J, de Souza Fonseca A, Bufalino L. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2) Nanoparticles. J Nanomater. 2015, 9 pages. http://dx.doi.org/10.1155/2015/493439
[19] Moura E A B, Nogueira B R, Ortiz A V. Changes in Physicochemical, Morphological and Thermal Properties of Electron-Beam Irradiated Ethylene–Vinyl Alcohol Copolymer (EVOH) as a Function of Radiation Dose. SM/EB-16.
[20] Nogueira B R, Lima N B, Chinellato A C, Parveen A, Rangari V K, Moura E A B. Thermal and morphological behavior of EVOH/Piassava fiber composites treated by electron-beam irradiation.
[21] Franzoso F, Tabasso S, Antonioli D. Films Made from Poly (vinyl alcohol-co-ethylene) and Soluble Biopolymers Isolated from Municipal Biowaste. J. APPL. POLYM. SCI. 2015, 132, (4), 41359-11. http://dx.doi.org/10.1002/app.41359
[22] Franzoso F, Vaca-Garcia C, Rouilly A, Evon Ph, Montoneri E, Persico P, Nistico R, Mendichi R, Francavilla M. Extruded versus solvent cast blends of poly(vinyl alcohol-co-ethylene) and biopolymers isolated from municipal biowaste. J. APPL. POLYM. SCI. 2011, 43009, 1-17. http://dx.10.1002/app.43009
[23] Dikobe D G, Luyt A S. Effect of Filler Content and Size on the Properties of Ethylene Vinyl Acetate Copolymer–Wood Fiber Composites. J. APPL. POLYM. SCI. 2007, 103, 3645–3654. https://doi.org/10.1002/app.25513
[24] Khiari R, Marrakchi Z, Belgacem M N, Mauret E, Mhenni F. New lignocellulosic fibres-reinforced composite materials: A stepforward in the valorisation of the Posidonia oceanica balls. Compos Sci Technol. 2011, 71, 1867–1872. https://doi.org/10.1016/j.compscitech.2011.08.022
[25] Pineda-Pimentel M G, Flores-Ramirez N, Farías Sanchez J C, Domratcheva-Lvova L, Vasquez-Garcia SR, García-Gonzalez L, Theoretical analysis and FTIR of cellulose nanowhiskers/Poly(ButylAcrylate). Superficies y Vacío. 2016, 29, (3). http://www.redalyc.org/articulo.oa?id=94251122005
[26] Zhang X, Wu X, Lu C, Lu C, Zhou Z. Dialysis-Free and in Situ Doping Synthesis of Polypyrrole@Cellulose Nanowhiskers Nanohybrid for Preparation of Conductive Nanocomposites with Enhanced Properties. ACS Sustainable Chem. Eng. 2015, 3, (4), 675–682. https://doi.org/10.1021/sc500853m
[27] Li R, Fei J, Cai Y and al. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydr. Polym. 2009, 76, 94–99. https://doi.org/10.1016/j.carbpol.2008.09.034
[28] Kargarzadeh H, Ahmad I, Abdullah I. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose. 2012, 19, 855–866. https://doi.org/10.1007/s10570-012-9684-6
[29] de Menezes A J, Siqueira G, Curvelo A, Dufresne A. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer. 2009, 50, 5052–4563. https://doi.org/10.1016/j.polymer.2009.07.038
[30] Silvério H A, Neto W P F, Dantas N O, Pasquini D. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod. 2013, 44, 427–436. https://doi.org/10.1016/j.indcrop.2012.10.014
[31] Zhou Z, Yang Y, Han Y; Guo Qu, Zhang X, Lu C. In Situ Doping Enables the Multifunctionalization of Templately Synthesized Polyaniline@Cellulose Nanocomposites. Carbohydr. Polym. 2017, 177, 241-248. https://doi.org/10.1016/j.carbpol.2017.08.136
[32] Lu P, Hsieh Y. Preparation and Properties of Cellulose Nanocrystals: Rods, Spheres, and Network. Carbohydr. Polym. 2010, 82, 329–336. https://doi.org/10.1016/j.carbpol.2010.04.073
[33] Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot, Sh, Shoseyov O. Highly Modified Cellulose Nanocrystals and Formation of Epoxy-CNC Nanocomposites. ACS Appl. Mater. Interfaces. 2016, 8, (41), 28086–28095. https://doi.org/10.1021/acsami.6b09852
[34] Hammiche D, Boukerrou A, Djidjelli H, Grohens Y, Bendahou A, Seantier B. Characterization of cellulose nanowhiskers extracted from alfa fiber and the effect of their dispersion methods on nanocomposite properties. J ADHES SCI TECHNOL. 2016, 30, (17), 1899–1912. https://doi.org/10.1080/01694243.2016.1170586
[35] Chirayil C J, Mathew L, Thomas S. Review of Recent Research in Nano Cellulose Preparation from Different Lignocellulosic Fibers. Rev.Adv. Mater. Sci. 2014, 37, 20-28.
[36] Fortunati E, Luzi F, Puglia D, Terenzi A, Vercellino M, Visai L, Santulli C, Torrea L, Kennyand J M. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles : Part II. Carbohydr. Polym. 2013, 97, 837–848. https://doi.org/10.1016/j.carbpol.2013.05.015
[37] Tang X, Alavi S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16. 10.1016/j.carbpol.2011.01.030
[38] Martinez-Sanz M, Olsson R T, López-Rubio A, Lagaron J M. Development of Bacterial Cellulose Nanowhiskers Reinforced EVOH Composites by Electrospinning. J. APPL. POLYM. SCI. 2012, 124, 1398–1408. https://doi.org/10.1002/app.35052
[39] Nistico R, Evon Ph, Labonne L, Vaca-Medina G, Montoneri E, Francavilla M, Vaca-Garcia C, Magnacca G, Franzoso F, Negre M. Extruded Poly(ethylene–co–vinyl alcohol) Composite Films Containing Biopolymers Isolated from Municipal Biowaste. CHEMISTRYSELECT. 2016, 1, (10), 2354-2365. https://doi.org/10.1002/slct.201600335
[40] Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. COMPOS PART B-ENG. 2011, 42, (4), 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010
[41] Pezmanchado M A, Biagiotti J, Kenny J M. Comparative Study of the Effects of Different Fibers on the Processing and Properties of Ternary Composites Based on PP-EPDM Blends. Polym. Compos. 2002, 23, (5), 779-789. https://doi.org/10.1002/pc.10476
[42] Borsoi C, Scienza L C, Zattera A J. Characterization of Composites Based on Recycled Expanded Polystyrene Reinforced with Curaua Fibers. J. APPL. POLYM. SCI. 2012, 128, (1), 653–659. https://doi.org/10.1002/app.38236
[43] Cabedo L, Giménez E, Lagaron J M, Gavara R, Saura J J. Development of EVOH-Kaolinite Nanocomposites. Polymer. 2004, 45, (15), 5233-5238. https://doi.org/10.1016/j.polymer.2004.05.018
[44] López-de-Dicastillo C, Alonso J M, Catalá R, Gavara R, Hernández-Muñoz P. Improving the Antioxidant Protection of Packaged Food by Incorporating Natural Flavonoids into Ethylene−Vinyl Alcohol Copolymer (EVOH) Films. J Agric Food Chem. 2010, 58, (20), 10958-64. https://doi.org/10.1021/jf1022324
[45] Mokwena K KH, Tang J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, (7), 640-50. https://doi.org/10.1080/10408398.2010.504903
[46] Pothan L. A, Thomas S. Effect of Hybridization and Chemical Modification on the Water-Absorption Behavior of Banana Fiber–Reinforced Polyester Composites. J. APPL. POLYM. SCI. 2004, 91, (6), 3856-3865. https://doi.org/10.1002/app.13586
[47] Garcia de Rodriguez N L, Thielemans W, Dufresne A. Sisal Cellulose Whiskers Reinforced Polyvinyl Acetate Nanocomposites. Cellulose. 2006, 13, (3), 261-270. https://doi.org/10.1007/s10570-005-9039-7
[48] Guohua Z, Ya L, Cuilan F, Min Z, Caiqiong Z, Zongdao Ch. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. POLYM DEGRAD STABIL. 2006, 91, (4), 703-711. https://doi.org/10.1016/j.polymdegradstab.2005.06.008
[49] Dhakal H N, Zhang Z Y, Richardson M O W. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol. 2007, 67, 1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019
[50] Saxena A. Nanocomposites Based on Nanocellulose Whiskers. [Dissertation]. Atlanta : School of Chemistry and Biochemistry Georgia Institute of Technology, 2013.

Downloads

Published

2019-12-25

How to Cite

BENCHIKH, L.; MERZOUKI, A.; GROHENS, Y.; PELLIN, I. EXTRUDED POLY(ETHYLENE–CO–VINYL ALCOHOL) COMPOSITE FILMS REINFORCED WITH CELLULOSIC FIBERS ISOLATED FROM TWO LOCAL ABUNDONATES PLANTS. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1, p. 49–72, 2019. DOI: 10.4314/jfas.v12i1.5. Disponível em: https://jfas.info/index.php/JFAS/article/view/493. Acesso em: 30 jan. 2025.

Issue

Section

Articles