ADSORPTION OF Co (II) IONS FROM AQUEOUS SOLUTION ONTO TEA AND COFFEE POWDER: EQUILIBRIUM AND KINETIC STUDIES
DOI:
https://doi.org/10.4314/jfas.v11i1.5Keywords:
Adsorption;, Cobalt;, Isotherms model;, Kinetic study.Abstract
Adsorption of Co(II) ions from aqueous solutions onto Tea and Coffee powders has been examined in a batch adsorption process. The adsorption of Co(II) ions was found to be dependent on contact time, pH of solution, initial metal ion concentration, and adsorbent dose. The experimental equilibrium adsorption data were studied by Langmuir, Freundlich, Temkin and Dubinin-Radushkevic isotherms models. The Langmuir model display demonstrated a superior fit than the other three models by higher correlation coefficient, R2. The maximum adsorption capacities calculated from the Langmuir isotherm model were 244 mg/g, for both coffee and tea at optimum circumstances. The kinetic studies denoted that the adsorption process of Co(II) ions followed well pseudo-second-order model. According to the adsorption capacity, coffee and tea powder considered as an effective, low cost, and environmentally friendly adsorbent for the removal of Co(II) ions from aqueous solutions.
Downloads
References
[2] Iqbal M. and Edyvean, R. G. J. Loofa sponge immobilized fungal biosorbent: Arobust system for cadmium and other dissolved metal removal from aqueous solution, Chemosphere, 2005, 61, 510 – 518
[3] Yıldız D., Keskin F., and Demirak A. Biosorption of 2,4 dichlorophenol Onto Turkish Sweetgum Bark in a Batch System: Equilibrium and Kinetic Study, Acta Chim. Slov., 2017, 64, 237–247
[4] Anwer A., Shamim A., and Ashfaq A. Kinetics And Isotherm Studies For Evaluating Adsorption Capacity Of Ceramic Pottery Waste For The Removal Of Cu(II) In Aqueous System, 3rd International Conference on Recent Innovations in Science, Technology, Management, and Environment, 18th December 2016, Indian Federation of United Nations Associations, New Delhi, India
[5] Huang C. P. and Wu, M. H. Chromium removal by carbon adsorption., J. Water. Pollut. Control Fed., 1975, 47, 2437-2445
[6] Elsherif K. M. and Yaghi M. M. Studies with Model Membrane: The Effect of Temperature on Membrane Potential, Moroccan J. Chem., 2017, 5 (1), 131-138
[7] Elsherif K. M. and Yaghi M. M., Membrane Potential Studies of Parchment Supported Silver Oxalate membrane , J. Mater. Environ. Sci., 2017, 8 (1), 356-363
[8] Elsherif K. M. and Yaghi M. M. Studies with Model Membrane: Determination of Fixed Charge Density of Silver Sulfite Membrane , Am. J. Pol. Sci. Tech., 2016, 2 (2), 28-33
[9] Elsherif K. M., El-Hashani A., and El-Dali A., Bi-ionic Potential Studies for Silver Thiosulphate Parchment-Supported membrane, Int. J. Adv. Sci. Tech. Res., 2014, 1 (4), 638-646
[10] Elsherif K. M., El-Hashani A., and El-Dali A. Bi-Ionic Potential Studies For Thallium
Chromate Parchment-Supported Membrane, Int. J. Res. Pharm. Chem., 2014, 4 (1), 267-273
[11] Elsherif K. M., El-Hashani A., El-Dali A., and Musa M. Ion Selectivity Across Parchment-Supported Silver Chloride Membrane in Contact with Multi-valent Electrolytes, Int. J. Anal. Bioanal. Chem., 2014, 4 (2), 58-62
[12] Elsherif K. M., El-Hashani A., El-Dali A., and Saad M. Ion-Permeation Rate of (1:1) Electrolytes across Parchment-Supported Silver Chloride Membrane, Int. J. Chem. Pharm. Sci., 2014, 2 (6), 890-897
[13] Elsherif K. M., El-Hashani A., and El-Dali A. Potentiometric Determination of Fixed Charge Density and Permselectivity for Silver Thiosulphate membrane , J. App. Chem., 2013, 2 (6), 1543-1551
[14] Elsherif K. M., El-Hashani A., and El-Dali A. Potentiometric determination of fixed charge density and permselectivity for Thallium Chromate membrane, Ann. Chem. Forsch., 2013, 1 (3), 15-25
[15] Elsherif K. M., El-Hashani A., and El-Dali A. Effect of temperature on membrane potential and evaluation of thermodynamic parameters of parchment supported silver thiosulphate, Der Chem. Sin., 2013, 4 (6), 13-21
[16] Mousavi H. Z. and Lotfi Z., Adsorption of heavy metal ions on olive leaves: Equilibrium and kinetic studies, J. App. Chem., 2012, 7 (23), 49-55
[17] Mohamed R., Mustafa A., and Mohamed M. Biosorption of Cr(VI) and Cu(II) by Palm Kernel Powder and Its Potential Application, Int. J. Environ. Sci. Development, 2016, 7 (11), 788-792
[18] Chopra A. K. and Pathak C. Biosorption technology for removal of metallic pollutants-An overview, J. of App. Nat. Sci., 2010, 2 (2), 318-329
[19] Elsherif K. M., Ewlad-Ahmed A. M., and Treban A. Biosorption Studies of Fe (III), Cu (II), and Co (II) from Aqueous Solutions by Olive Leaves Powder, App. J. Environ. Engine. Sci., 2017, 3 (4), 341-352
[20] Elsherif K. M., Ewlad-Ahmed A. M., and Treban A. Removal of Fe (III), Cu (II), and Co (II) from Aqueous Solutions by Orange Peels Powder: Equilibrium Study, Biochem. Mol. Biol., 2017, 2 (6), 46-51
[21] Hussain A. F. Adsorption of Cobalt (II) ion from Aqueous Solution on Selected Iraqi clay surfaces, Nat. J. Chem., 2008, 30, 229-250
[22] Langmuir I. The Adsorption Of Gases On Plane Surfaces Of Glass, Mica And Platinum, J. Am. Chem. Soc., 1918, 40 (9), 1361-1403
[23] Freundlich H. M. F. Over the Adsorption in Solution, Z. phys. Chem., 1906, 57(A), 387-471
[24] Dada A. O., Olalekan A. P., Olatunya A. M., and Dada O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 2012, 3 (1), 38-45
[25] Huston N. D., Yang R.T. Theoretical basis for the Dubinin-Radushkevich (D-R) adsorption isotherm equation., Adsorption, 1997, 3, 189-195
[26] Lagergren S. Zur theorie der sogenannten adsorption geloester stoffe, K. Sven. Vetenskapsakad. Handl., 1898, 24 (4), 1-39
[27] Ho Y. S., McKay G. The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Flat, Water Res., 2000, 34 (3), 735-742