RHEOLOGICAL PROPERTIES STUDY OF FRACTURING FLUIDS USING LOCAL SANDS

Authors

  • R. Akkal Laboratoire de G_enie Minier, Ecole Nationale Polytechnique, Departement de Génie Minier, 10 Avenue Hassen Badi BP 182 el harrach Alger
  • M. Khodja Sonatrach/Division Technologies et Innovation, Avenue du 1er Novembre, 35000 Boumerdès

DOI:

https://doi.org/10.4314/jfas.v12i1S.12

Keywords:

Aeolian sand;rheological properties; fracturing fluids; yield value.

Abstract

A method of extracting natural gas from shale rock formations is hydraulic fracturing. The nearly water-based fracking fluid consists of cross-linking agents, mineral salts, pH-adjusting agents, and other components to control rheological behaviour. The fracturing fluid is pumped deep into a well at high pressure to crack the shale layer in order to access the natural gas. Once the fractures are formed, proppants, usually crystalline silica, keep them open, filling in the cracks created to allow the proper flow of hydrocarbons. This research explores the rheological properties of XLFC-1B polymer (gel-forming) and a borate complex (crosslinker XLW-56) as additives solutions, existing components used in hydraulic fracturing using local sands, including aoelian and quarries sands. Tests have shown that liquids exhibit viscoelastic behavior that allows them to hold the proppants and place them in fractures. It must also be established that these fluids ' minimal stress allows the liquid to flow.

Downloads

Download data is not yet available.

References

[1] M. Janszen, T. Bakker, and P. L. J. Zitha. SPE-174231-MS, chapter Hydraulic Fracturing in the Dutch Posedonia Shale, page 34. Society of Petroleum Engineers, Budapest, Hungary, 2015. ISBN 978-1-61399-396-5. doi : 10.2118/174231-MS. URL https://doi.org/10. 2118/174231-MS.
[2] Ghaithan A. Al-Muntasheri, Feng Liang, and Katherine L. Hull. Nanoparticle-enhanced hydraulic-fracturing fluids : A review. SPE Production & Operations, 32(02) :186–195, 2017. ISSN 1930-1855. doi : 10.2118/185161-PA. URL https://doi.org/10.2118/185161-PA.
[3] M. Vishkai, G. Hareland, and I. D. Gates. ARMA-2014-7360, chapter Influence of Stress Anisotropy on Hydraulic Fracturing, page 6. American Rock Mechanics Association, Minneapolis, Minnesota, 2014. ISBN 978-0-9894844-1-1. URL https://doi.org/.
[4] R. G. Keck. Spe-21860-ms. page 12, 1991. doi : 10.2118/21860-MS. URL https://doi.org/10.2118/21860-MS.
[5] Subhash N. Shah. Effects of pipe roughness on friction pressures of fracturing fluids. SPE Production Engineering, 5(02) :151–156, 1990. ISSN 0885-9221. doi : 10.2118/18821-PA. URL https://doi.org/10.2118/18821-PA.
[6] Reza Barati and Jenn-Tai Liang. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), 2014. doi : https://doi.org/10.1002/app.40735. URL https://onlinelibrary.wiley.com/doi/epdf/10. 1002/app.40735.
[7] Jonathan Koplos, Mary Ellen Tuccillo, and Brent Ranalli. Hydraulic fracturing overview : How, where, and its role in oil and gas. JournalAmerican Water Works Association, 106(11) :38–46, 2014. doi : https://doi.org/10.5942/jawwa.2014.106.0153. URL https://awwa. onlinelibrary.wiley.com/doi/abs/10.5942/jawwa.2014.106.0153.
[8] Tanya J Gallegos, Brian A Varela, Seth S Haines, and Mark A Engle. Hydraulic fracturing water use variability in the u nited s tates and potential environmental implications. Water Resources Research, 51(7) :5839–5845, 2015. doi : https://doi.org/10.1002/2017WR022130. URL https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR022130.
[9] Ryan WJ Edwards and Michael A Celia. Shale gas well, hydraulic fracturing, and formation data to support modeling of gas and water flow in shale formations. Water Resources Research, 54(4) :3196–3206, 2018. doi : https://doi.org/10.1002/2017WR022130. URL https: //agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR022130.
[10] Matthew S. Mandarich and Greg Neal. Spe-141523-ms. page 7, 2011. doi : 10.2118/141523-MS. URL https://doi.org/10.2118/ 141523-MS.
[11] Diankui Fu, Andrey Fedorov, Artem V. Prudnikov, Kevin D. Mauth, and Bernhard R. Lungwitz. SPE-132523-MS, chapter New Polymer Fluid for Hydraulic Fracturing in Russia, page 11. Society of Petroleum Engineers, Tunis, Tunisia, 2010. ISBN 978-1-55563-296-0. doi : 10.2118/132523-MS. URL https://doi.org/10.2118/132523-MS.
[12] H. K. van Poollen. ARMA-57-0113, chapter Theories Of Hydraulic Fracturing, page 16. American Rock Mechanics Association, Golden, Colorado, 1957. URL https://doi.org/.
[13] Ibrahim Al-Hulail, Ahmed BinGhanim, Waseem Abdulrazzaq, Hicham El-Hajj, and Osman Abdullatif. SPE-192234-MS, chapter High Resolution Analysis of Sand-Based Composition for Hydraulic Fracturing Application, page 12. Society of Petroleum Engineers, Dammam, Saudi Arabia, 2018. ISBN 978-1-61399-620-1. doi : 10.2118/192234-MS. URL https://doi.org/10.2118/192234-MS.
[14] R. S. Seright and J. Liang. SPE-26991-MS, chapter A Survey of Field Applications of Gel Treatments for Water Shutoff, page 11. Society of Petroleum Engineers, Buenos Aires, Argentina, 1994. ISBN 978-1-55563-470-4. doi : 10.2118/26991-MS. URL https://doi.org/10. 2118/26991-MS.
[15] R.D. Sydansk and P.E. Moore. Gel conformance treatments increase oil production in wyoming. Oil and Gas Journal ; (United States), 90 :3, 1 1992. ISSN 0030-1388.
[16] D. C. Borling. Spe-27825-ms. page 14, 1994. doi : 10.2118/27825-MS. URL https://doi.org/10.2118/27825-MS.
[17] G. P. Hild and R. K. Wackowski. Reservoir polymer gel treatments to improve miscible co2 flood. SPE Reservoir Evaluation & Engineering, 2(02) :196–204, 1999. ISSN 1094-6470. doi : 10.2118/56008-PA. URL https://doi.org/10.2118/56008-PA.
[18] R. H. Lane and G. S. Sanders. Spe-29475-ms. page 12, 1995. doi : 10.2118/29475-MS. URL https://doi.org/10.2118/29475-MS.
[19] A. Richard Sinclair. Rheology of viscous fracturing fluids. Journal of Petroleum Technology, 22(06) :711–719, 1970. ISSN 0149-2136. doi : 10.2118/2623-PA. URL https://doi.org/10.2118/2623-PA.
[20] P. C. Harris. Effects of texture on rheology of foam fracturing fluids. SPE Production Engineering, 4(03) :249–257, 1989. ISSN 0885-9221. doi : 10.2118/14257-PA. URL https://doi.org/10.2118/14257-PA.
[21] A. Acharya. Spe-16221-ms. page 11, 1987. doi : 10.2118/16221-MS. URL https://doi.org/10.2118/16221-MS.
[22] Y. Liu and M. M. Sharma. Spe-96208-ms. page 12, 2005. doi : 10.2118/96208-MS. URL https://doi.org/10.2118/96208-MS.
[23] Dongkeun Lee, Kaustubh Shrivastava, and Mukul M. Sharma. Arma-2017-0725. page 8, 2017. URL https://doi.org/.
[24] H. M. Princen and A. D. Kiss. Rheology of foams and highly concentrated emulsions : Iv. an experimental study of the shear viscosity and yield stress of concentrated emulsions. Journal of Colloid and Interface Science, 128(1) :176–187, 1989. ISSN 0021-9797. doi : https: //doi.org/10.1016/0021-9797(89)90396-2. URL http://www.sciencedirect.com/science/article/pii/0021979789903962.
[25] J. R. Cameron, D. C. Gardner, and R. W. Jr Veatch. Insights on rheological testing and flow behavior of delayed-crosslinked fracturing fluids. SPE Production Engineering, 5(02) :157–165, 1990. ISSN 0885-9221. doi : 10.2118/18209-PA. URL https://doi.org/10. 2118/18209-PA.
[26] A. M. Gomaa, D. V. S. Gupta, and P. Carman. Spe-168113-ms. page 17, 2014. doi : 10.2118/168113-MS. URL https://doi.org/10. 2118/168113-MS.
[27] R. S. Seright. Gel placement in fractured systems. SPE Production & Facilities, 10(04) :241–248, 1995. ISSN 1064-668X. doi : 10.2118/ 27740-PA. URL https://doi.org/10.2118/27740-PA.
[28] R. S. Seright. Gel propagation through fractures. SPE Production & Facilities, 16(04) :225–231, 2001. ISSN 1064-668X. doi : 10.2118/ 74602-PA. URL https://doi.org/10.2118/74602-PA.
[29] Baojun Bai, Yuzhang Liu, Jean-Paul Coste, and Liangxiong Li. Preformed particle gel for conformance control : Transport mechanism through porous media. SPE Reservoir Evaluation & Engineering, 10(02) :176–184, 2007. ISSN 1094-6470. doi : 10.2118/89468-PA. URL https://doi.org/10.2118/89468-PA.
[30] V. G. Reidenbach, P. C. Harris, Y. N. Lee, and D. L. Lord. Rheological study of foam fracturing fluids using nitrogen and carbon dioxide. SPE Production Engineering, 1(01) :31–41, 1986. ISSN 0885-9221. doi : 10.2118/12026-PA. URL https://doi.org/10.2118/12026-PA.
[31] R. E. Blauer, B. J. Mitchell, and C. A. Kohlhaas. Spe-4885-ms. page 12, 1974. doi : 10.2118/4885-MS. URL https://doi.org/10. 2118/4885-MS.
[32] Ashkan Haghshenas and Hisham A. Nasr-El-Din. Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. Journal of Natural Gas Science and Engineering, 21 :316–325, 2014. ISSN 1875-5100. URL http://www.sciencedirect. com/science/article/pii/S1875510014002479.
[33] A. V. Tobolsky and J. J. Aklonis. A molecular theory for viscoelastic behavior of amorphous polymers. The Journal of Physical Chemistry, 68(7) :1970–1973, Jul 1964. ISSN 0022-3654. doi : 10.1021/j100789a050. URL https://doi.org/10.1021/j100789a050.
[34] Toufiq Ahmed and Kenji Aramaki. Temperature sensitivity of wormlike micelles in poly(oxyethylene) surfactant solution : Importance of hydrophilic-group size. Journal of Colloid and Interface Science, 336(1) :335–344, 2009. ISSN 0021-9797. doi : https://doi.org/10.1016/j. jcis.2009.03.040. URL http://www.sciencedirect.com/science/article/pii/S0021979709003439.
[35] Meng Yu, Yan Mu, Guanqun Wang, and Hisham A. Nasr-El-Din. Impact of hydrolysis at high temperatures on the apparent viscosity of carboxybetaine viscoelastic surfactant-based acid : Experimental and molecular dynamics simulation studies. SPE Journal, 17(04) :1119– 1130, 2012. ISSN 1086-055X. doi : 10.2118/142264-PA. URL https://doi.org/10.2118/142264-PA.
[36] H. Rehage and H. Hoffmann. Viscoelastic surfactant solutions : model systems for rheological research. Molecular Physics, 74(5) :933–973, Dec 1991. ISSN 0026-8976. doi : 10.1080/00268979100102721. URL https://doi.org/10.1080/00268979100102721.
[37] Peter Fischer and Heinz Rehage. Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature. Langmuir, 13(26) :7012–7020, Dec 1997. ISSN 0743-7463. doi : 10.1021/la970571d. URL https://doi.org/10.1021/la970571d.
[38] Vania Croce, Terence Cosgrove, Geoff Maitland, Trevor Hughes, and Göran Karlsson. Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir, 19(20) :8536–8541, Sep 2003. ISSN 0743-7463. doi : 10.1021/la0345800. URL https://doi.org/10.1021/la0345800.
[39] A. Ruma Acharya. Particle transport in viscous and viscoelastic fracturing fluids. SPE Production Engineering, 1(02) :104–110, 1986. ISSN 0885-9221. doi : 10.2118/13179-PA. URL https://doi.org/10.2118/13179-PA.
[40] T. N. Castro Dantas, V. C. Santanna, A. A. Dantas Neto, E. L. Barros Neto, and M. C. P. Alencar Moura. Rheological properties of a new surfactant-based fracturing gel. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 225(1) :129–135, 2003. ISSN 0927-7757. doi : https://doi.org/10.1016/S0927-7757(03)00355-8. URL http://www.sciencedirect.com/science/article/pii/ S0927775703003558.
[41] Caili Dai, Kai Wang, Yifei Liu, Hui Li, Ziyang Wei, and Mingwei Zhao. Reutilization of fracturing flowback fluids in surfactant flooding for enhanced oil recovery. Energy & Fuels, 29(4) :2304–2311, Apr 2015. ISSN 0887-0624. doi : 10.1021/acs.energyfuels.5b00507. URL https://doi.org/10.1021/acs.energyfuels.5b00507.
[42] Wayne C. Yount, David M. Loveless, and Stephen L. Craig. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. Journal of the American Chemical Society, 127(41) :14488–14496, Oct 2005. ISSN 0002-7863. doi : 10.1021/ja054298a. URL https://doi.org/10.1021/ja054298a.
[44] B. Bohloli and C. J. de Pater. Experimental study on hydraulic fracturing of soft rocks : Influence of fluid rheology and confining stress. Journal of Petroleum Science and Engineering, 53(1) :1–12, 2006. ISSN 0920-4105. doi : https://doi.org/10.1016/j.petrol.2006.01.009. URL http://www.sciencedirect.com/science/article/pii/S0920410506000210.
[45] Cornelis J. de Pater, Yufei Dong, and Bahman Bohloli. Spe-105620-ms. page 10, 2007. doi : 10.2118/105620-MS. URL https://doi. org/10.2118/105620-MS.
[46] Mian Wang, Xiaoshan Fan, Warintorn Thitsartarn, and Chaobin He. Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polymer, 58 :43–52, 2015. ISSN 0032-3861. doi : https://doi.org/10.1016/j.polymer.2014. 12.042. URL http://www.sciencedirect.com/science/article/pii/S0032386114011422.
[47] Michèle Marcotte, Ali R. Taherian Hoshahili, and H. S. Ramaswamy. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8) :695–703, 2001. ISSN 0963-9969. doi : https://doi.org/10.1016/S0963-9969(01) 00091-6. URL http://www.sciencedirect.com/science/article/pii/S0963996901000916.

Downloads

Published

2019-12-19

How to Cite

AKKAL, R.; KHODJA, M. RHEOLOGICAL PROPERTIES STUDY OF FRACTURING FLUIDS USING LOCAL SANDS. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1S, p. 158–176, 2019. DOI: 10.4314/jfas.v12i1S.12. Disponível em: https://jfas.info/index.php/JFAS/article/view/656. Acesso em: 31 jan. 2025.