DRUG LIKNESS FILTERS AND QSAR ANALYSIS OF CAMPHOR-BASED DIIMINES DERIVATIVES AS ANTIVIRAL AGENTS

Authors

  • W. Hamzia Département de biotechnologie, Faculté des sciences de la nature et de la vie, Université des sciences et technologies d'Oran-Mohamed Boudiaf (USTO-MB) Oran 31000, Algérie
  • N. Tchouar Laboratoire Génie des Procédés et Environnement (GPE), Faculté de chimie, Université des sciences et technologies d'Oran (USTO) BP 1503 Oran 31000, Algérie
  • S. Belaidi Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and environment, Department of Chemistry , University of Biskra
  • O. Oukil Laboratoire Génie des Procédés et Environnement (GPE), Faculté de chimie, Université des sciences et technologies d'Oran (USTO) BP 1503 Oran 31000, Algérie
  • N. Aoumeur Laboratoire Génie des Procédés et Environnement (GPE), Faculté de chimie, Université des sciences et technologies d'Oran (USTO) BP 1503 Oran 31000, Algérie
  • S. Medjahed Laboratoire Génie des Procédés et Environnement (GPE), Faculté de chimie, Université des sciences et technologies d'Oran (USTO) BP 1503 Oran 31000, Algérie

DOI:

https://doi.org/10.4314/jfas.v12i1.28

Keywords:

Camphor, diimines derivatives, influenza virus, MLR, QSAR.

Abstract

In the present study, Quantitative structure–activity relationship (QSAR) study has been applied on twenty-five molecules of camphor-based symmetric diimines. A Multiple Linear Regression (MLR) procedure was used to correlate the relationships between molecular descriptors and the biological activity of camphor-based symmetric diimine derivatives. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based on the following descriptors: MW, HE, Pol, MR, MV, HBA, NRB, PSA, µ and Etotal, for the influenza virus reproduction inhibition to confirm the predictive power of the models. High correlation between experimental and predicted activities was observed, indicating good quality of the QSAR model.

Downloads

Download data is not yet available.

References

[1] Sokolova A. S, Yarovaya О.I, Shernyukov А. V., Gatilov Y. V., Razumova Y. V., Zarubaev V.V., Tretiak T. S., Pokrovsky А. G., Kiselev O. I., and Salakhutdinov N. F. Discovery of a new class of antiviral compounds: Camphor imine derivatives. Eur. J. Med. Chem., 2015, 105, 263-273
[2] Quigley E., Drug Discov. Today, 2006, 11, 478-480, doi: 0.1016/j.drudis.2006.04.010
[3] Fiers W., De Filette M., Birkett A., Neirynck S., Min J.W., Virus Res. 2004, 103(1-2), 173-176, doi : 10.1016/j.virusres.2004.02.030
[4] Nicoll A., Brown C., Karcher F., Penttinen P., Hegermann-Lindencrone M., Villanueva S., Ciotti M., Jean-Gilles L., Rehmeta S., and Nguyen-Van-Tamd, Bull J., World Health Organ. 2014, 22(7), 2141-2148, doi: 10.1016/j.bmc.2014.02.038. Epub 2014 Mar 1.
[5] Chen W., Vermaak I., Viljoen A., Molecules, 2013, 18(5), 5434-5454, doi: 10.3390/molecules18055434
[6] Martinez J. P., Sasse F., Brontrup M., Diez J., Meyerhans A., Nat. Prod. Rep., 2015, 32, 29-48, doi:10.1039/C4NP00085D
[7] Zhao X., Zhang Z.W., Cui W., Chen S., Zhou Y., Dong J., Jie Y., Wan J., Xu Y., Hu W., Med. Chem. Comm., 2015, 6(4), 727-731, doi: 10.1039/C4MD00515E
[8] Zarubaev V.V., Garshinina A.V., Tretiak T.S., Fedorova V. A., Shtro A.A., Sokolova A.S., Yarovaya O.I., and Salakhutdinov N.F., Antiviral Res. 2015, 120, 126-133, doi: 10.1016/j.antiviral.2015.06.004
[9] Joydeep M., Raja C., Saikat S., Anjay V., Biplab D., and Ravi T. K. Synthesis and biological evaluation of some novel quinoxalinyltriazole derivatives. Der Pharma Chemica, 2009, 1(2): 188-198
[10] Joachim P., Nathalie M., Christine K., Gerald M., Bioorg. Med. Chem. 2012, 20, 5343-5351, doi: 10.1016/j.bmc.2011.11.064.
[11] Fu L., Min N., Cai X., J. Biomater. Tissue Eng., 2019, 9(2), 198–205 doi: 10.1166/jbt.2019.1972
[12] Shao W., Yuan L., Su S., Xin Z., Ma J., Wang S., J. Biomater. Tissue Eng. 2019, 9(1), 119-123, doi: 10.1166/jbt.2019.1942
[13] Zheng H., Jie J., and Zheng Y., J. Bionanosci. 2013, 7(6),643-648, doi: 10.1166/jbns.2013.1165
[14] Painuly D., Bhatt A., and Krishnan V.K., J. Biomater. Tissue Eng. 2014, 4(10), 823-833, doi: 10.1166/jbt.2014.1233
[15] Li D., Yang L., Shi J., Hou E., and Zuo C., J. Bionanosci., 2013, 7, 465-468, doi: 10.1166/jbns.2013.1116
[16] Medjahed S., Belaidi S., Djekhaba S., Tchouar N., Kerassa A., J. Bionanosci. 2016, 10(2), 118-126, doi:10.1166/jbns.2016.1358
[17] Rouane A., Tchouar N., Kerassa A., Cinar M., Belaidi S., J. Bionanosci. 2018, 12(2), 278-283, doi: 10.1166/jbns.2018.1511
[18] Ge Y., Liu L., J. Bionanosci, 2013, 7(5), 606-611, doi: 0.1166/jbns.2013.1180
[19] Ayala A., Alexander J. D., Kargol A. U., J. Bionanosci. 2014, 8(4), 309-312, doi: 10.1166/jbns.2014.1237
[20] Kaur N., Yadav K., Garg R., Saroha K, Yadav D, J. Bionanosci. 2016, 10(3), 191-204, doi: 10.1166/jbns.2016.1340
[21] Sekar G., Sivakumar A., Mukherjee A., Chandrasekaran N., J. Bionanosci. 2016, 10(2), 94-109, doi: 10.1166/jbns.2016.1352
[22] Özden B., Yilmaz S., Baş B., Özden F.O., and Duran H., J. Biomater. Tissue Eng. 2017, 7(5), 413-417, doi: 10.1166/jbt.2017.1577
[23] Fengyan H., An K, Wen X., Zhao P., Shi D., Lin C., Liu H., J. Biomater. Tissue Eng. 2017, 7(1), 35-44, doi: 10.1166/jbt.2017.1536
[24] Jha N., Choi J.S., Kim J.H., Jung R., Choi E.H., Ryu J.J., Han I., J. Biomater. Tissue Eng., 2017,7(8), 662-670, doi: 10.1166/jbt.2017.1626
[25] Almoammar K. A., Alkofide E., Alkhathlan A., Alateeq Y., Alqahtani A., AlShaafim M. M., J. Biomater. Tissue Eng. 2017, 7(8), 671-677, doi: 10.1166/jbt.2017.1613
[26] Wei B., Shi Z., Xiao J., Xu Y., Lv L., J. Biomater. Tissue Eng. 2017, 7(5), 418-425, doi: 10.1166/jbt.2017.1581
[27] Xu H., Fang G., Gou J., Wang S., Yao Q., Zhang Y., Tang X., Zhao Y., J. Biomater. Tissue Eng. 2015, 5(12), 919-929, doi: 10.1166/jbt.2015.1405
[28] AlQahtani M. A., Vohra F., Aljutayli H., Alomran W., J. Biomater. Tissue Eng. 2019, 9(2), 236-242, doi: 10.1166/jbt.2019.1968
[29] Li J., Wang Z. Y., Hesham A., M. Fang M., Ma Y., Song Y.L., Jin L.Z., Gu X.Q., J. Biomater. Tissue Eng. 2019, 9(1), 69-75, doi: 10.1166/jbt.2019.1948
[30] Li X., Rong Q., Chen S. L., J. Biomater. Tissue Eng. 2015, 5(6),445-451, doi: 10.1166/jbt.2015.1334
[31] Guo H.G., Guo H.S., Yao F.L., Yang S.G., Chen Z., Wang T., J. Biomater. Tissue Eng. 2016, 6(2), 114-121, doi: 10.1166/jbt.2016.1427
[32] Jeyapragas R., Poovi G., Rao M. S., Gopal R., Sivabalan M., J. Bionanosci. 2015, 9(6), 465-474, doi: 10.1166/jbns.2015.1331
[33] Zakharov A.V., Lagunin A.A., Filimonov D.A., Poroikov V.V., J. Chem. Res. Toxicol. 2012, 25(11), 2378-2385, doi:10.1021/tx300247r
[34] Alam, S. M. Samanta S., Halder A. K., Basu S., Jha T., Eur. J. Med. Chem. 2009, 44, 359-364, doi: 10.1016/j.ejmech.2008.02.042
[35] Guillén-Casla V., Rosales-Conrado N., León-González M. E., Pérez- Arribas L. V., Polo-Díez L. M., J. Food Compos. Anal. 2011, 24(3), 456-464 doi: 10.1016/j.jfca.2010.11.010
[36] Khamouli S., Belaidi S., Almi Z., Medjahed S. Belaidi H., J. Bionanosci. 2017, 11(4), 301-309, doi: 10.1166/jbns.2017.1445
[37] Almi I., Belaidi S., Melkemi N., Bouzidi J., J. Bionanosci. 2018,12, 49-57, doi: 10.1166/jbns.2018.1503
[38] Jaen J. C., Davis R.E., Annu. Rep. Med. Chem. 1994, 29, 23-32, doi: 10.1016/S0065-7743(08)60716-2
[39] Sokolova A.S., Yarovaya О.C., Korchagina D.V., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Salakhutdinov N.F., Bioorg. Med. Chem. 2014, 22(7), 2141-2148, doi: 10.1016/j.bmc.2014.02.038
[40] Sokolov D.N., Zarubaev V.V., Shtro A.A., Polovinka M.P., Luzina O.A., Komarova N.I., Salakhutdinov N. F., Kiselev O.I., Bioorg. Med. Chem. Lett. 2012, 22(23), 7060-7064, doi: 10.1016/j.bmcl.2012.09.084
[41] Ramu A., Ramu N., Cancer Chemother. Pharmacol. 1992, 30(3), 165–173, doi: 10.1007/BF00686306
[42] HyperChem (Molecular Modeling System) Hypercube, Inc., 1115 NW, 4th Street, Gainesville, FL 32601, USA (2008).
[43] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., NakatsujiH., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian Inc., Wallingford, CT, 2010.
[44] Dermeche K., Tchouar N., Belaidi S., Salah T., J. Bionanosci., 2015, 9(5), 395-400(6), doi: 10.1166/jbns.2015.1320
[45] Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D., J. Med. Chem. 2002,45(12), 2615-2623, doi: 10.1021/jm020017n
[46] Soualmia F., Belaidi S., Belaidi H., Tchouar N., Almi Z., J. Bionanosci. 2017, 11(6), 584-591, doi: 10.1166/jbns.2017.1476
[47] Sebaa Z., Tchouar N., Salah T., Belaidi H., Almi Z., and Belaidi S., J. Bionanonsci., 2018, 12(1), 119-126, doi: 10.1166/jbns.2018.1491
[48] Database, [http://www.molinspiration.com].
[49] SPSS software packages, SPSS Inc., 444 North Michigan Avenue, Suite 3000, Chicago, Illinoi, 60611, USA.
[50] Kwiatkowski J. S., Leszczynski J., Teca I., J. Mol. Struct. 1997, 436, 451-480, doi: 10.1016/S0022-2860(97)00125-7
[51] Prasad O., Sinha L., Kumar N., J. At. Mol. Sci.1, 2010. 1(3), 201-214, doi: 10.4208/jams.032510.042010a
[52] Chunzhi A., Li C. Y., Yonghua W., Yadong C., Ling Y., Bioorg. Med. Chem. Lett. 2009, 19(3), doi: 803-80610.1016/j.bmcl.2008.12.016
[53] Rajesh K. S., Narayan V., Prasad O., and Narayan V., J. Chem. Vibrational, Structural and Electronic properties of 6-methyl nicotinic acid by Density Functional Theory Pharm. 2012, 4(6): 3287-3296.
[54] Murray J. S. and Sen K., “Molecular Electrostatic Potentials, Concepts and Applications”, Elsevier, Amsterdam, 1996.
[55] MarvinSketch 6.8.31, Chemaxon (http://www.chemaxon.com), 2015.
[56] Lipinski C. A., Lombardo F., Dominy B. W., and Feeney P. J., J. Adv. Drug Deliv. Rev., 2017, 23, doi: 10.1016/S0169-409X(96)00423-1
[57] Vistoli G., Pedretti A., Testa B., Drug. Discov.Today , 2008, 13(7–8), 285-294, doi: 10.1016/j.drudis.2007.11.007
[58] Belaidi S., Belaidi H., and Bouzidi J., Comput J. Theor. Nanosci. 2015, 12, 1737-1745, doi: 10.1166/jctn.2015.3952
[59] Veber D. F., Johnson S. R., Cheng H.Y., Smith B. R., Ward K. W., and Kopple K. D., J. Med. Chem. 2002, 45 (12), 2615-2623, doi: 10.1021/jm020017n
[60] Salah T., Belaidi S., Melkmi N., and, Tchouar N., Rev. Theor. Sci. 2015, 3, 355-364(10), doi: 10.1166/rits.2015.1040
[61] Kerassa A., Belaidi S., and Lanez T., Quantum Matter. 2016, 5, 45-52, doi: 10.1166/qm.2016.1253
[62] Schultes S., Graaf C., Haaksma E., Iwan J. P., and Kramer O., Drug Discov. Today: Technologies. 2010, 7(3), 157-162, doi: 10.1016/j.ddtec.2010.11.003
[63] Ertl P., Rohde B., and Selzer P., J. Med. Chem. 2000, 43(20), 3714-3717, doi: 10.1021/jm000942e
[64] Viswanadhan V.N., Ghose A. K., Revankar G. R., and Robins R. K., J. Chem. Inf. Comput. Sci., 1989, 29(3), 163-172, doi: 10.1021/ci00063a006
[65] Wang J., Xie X.Q. , Hou T., and Xu X., J. Phys. Chem.111, 2007, 111(20), 4443-4448, doi: 10.1021/jp068423w
[66] Thirunarayanan G., Int. Lett. Chem. Phys. Astron. 2014, 24, 89-98, doi: 10.18052/www.scipress.com/ILCPA.24.89
[67] Hasmukh R. K., Piyush P. P., Satish M. G., Jayesh S. B., Yogesh T. N, Int. Lett. Chem. Phys. Astron., 31, 20, 2014
[68] Patrick G. L., An Introduction to Medicinal Chemistry, Oxford University Press, Oxford, 1995
[69] Hopkins A. L, Groom C. R, Alexander A., Drug Discov. Today, 2004, 9(10), 430-431. doi: 10.1016/S1359-6446(04)03069-7
[70] Dimitrov V., and Komatsu T., An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Chem. Technol. Metall. 2010, 45, 219-250
[71] Kerns E., Drug-like properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization, Elsevier Science, Amsterdam, 2008.
[72] Moreira R., Leite A. C., Dos Santos R. R., Soares M. B., J. Curr. Drug Targets, 2009, 17(18), 6682-6691, doi: 10.1016/j.bmc.2009.07.068
[73] Oukil O., Tchouar N., Belaidi S., Salah T., and Cinar M., Structural investigation, drug likeness scoring and structure activity/property relationships applied on 1,2,3-thiadiazole derivatives, with kinase inhibitors activity. Rev. Roum. Chim. 2017, (621), 81-92
[74] Ouadah K., Tchouar N., Belaidi S., O. Oukil, and Cinar M. , J. Bionanosci. 2018, 12(2), 250-259, doi: 10.1166/jbns.2018.1513
[75] Belaidi S., Salah T., Melkemi N., Sinha L., Prasad O., J. Comput. Theor. Nanosci. 2015, 12(9), 2421-2427, doi: 10.1166/jctn.2015.4042
[76] Aoumeur N., Tchouar N., Belaidi S., Medjahed S., Oukil O., and Lanez T., J. Bionanosci. 2018, 12 (3), 428-436, doi: 10.1166/jbns.2018.1536
[77] Podunavac-Kuzmanovic S. O., Cvetkovic D. D., and Barna D. J., Int. J. Mol. Sci. 2009, 10(4), 1670-1682; 10.3390/ijms10041670
[78] Srivastava A.K., Shukla N., J. Saudi Chem. Soc., 2013, 17(3), 321-328 doi: 10.1016/j.jscs.2011.04.014
[79] Mellaoui M., Belaidi S., Bouzidi D., Gherraf N., Quantum Matter, 2014, 3(5), 435-441, doi: 10.1166/qm.2014.1142
[80] Heravi M. J., Kyani A., J. Chem. Inform. Comput. Sci. 2004, 44(4), 1328-1335, doi: 10.1021/ci0342270

Downloads

Published

2019-12-31

How to Cite

HAMZIA, W.; TCHOUAR, N.; BELAIDI, S.; OUKIL, O.; AOUMEUR, N.; MEDJAHED, S. DRUG LIKNESS FILTERS AND QSAR ANALYSIS OF CAMPHOR-BASED DIIMINES DERIVATIVES AS ANTIVIRAL AGENTS. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 1, p. 475–496, 2019. DOI: 10.4314/jfas.v12i1.28. Disponível em: https://jfas.info/index.php/JFAS/article/view/680. Acesso em: 30 jan. 2025.

Issue

Section

Articles