INFLUENCE OF ABSORBER LAYER GRADUAL GAP PROFILE ON Cu2ZnSn(S1-Y SeY )4 SOLAR CELL EFFICIENCY: NUMERICAL STUDY

Authors

  • N. Messei Laboratory of thin films and applications “LPCM”, Mohamed Khider University, BP, 07000 Biskra, Algeria

DOI:

https://doi.org/10.4314/jfas.v13i1.20

Keywords:

CZTS1–ySey; Kesterite; Stannite; thin film; solar cell; graded

Abstract

The gradual substitution of sulfur atoms (S) by selenium atoms (Se) in Cu2ZnSn(S1-y Sey )4 compounds causes a linear increase in the optical band-gap. For this reason those compounds are suitable to implement band-gap engineering in compositionally graded solar cells. In this paper, we have worked to take advantage of this feature to enhance the performances of the basic uniform Kesterite and Stannite CZTS1–ySey solar cells. The influence of Tow grading profile was investigated: fully graded (a) and double graded (b). Fully graded Cell showed better parameters than compositionally uniform cells. In Double graded cells it appeared that front grading had a disruptive effect on solar cell parameters. In contrary back grading ameliorates significantly all cell parameters. As a result, the efficiency of kesterite and stannite cells was enhanced from 9.05 and 5.22% to 16.65 and 15.77 % respectively.

Downloads

Download data is not yet available.

References

[1] C.M. Fella, Y. E. Romanyuk, A.N. Tiwari, Solar Energy Materials & Solar Cells 119 (2013) 276–277.
[2] X. Song, X. Ji, M. Li, W. Lin, X. Luo, and H. Zhang. Hindawi Publishing Corporation International Journal of Photoenergy. Volume 2014, Article ID 613173.
[3] K.ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, first edition 2015 John Wiley & Sons, Ltd. ISBN: 978-1-118-43787-2
[4] P.A. Fernandes, P.M.P. Salome´, A.F. da Cunha, Thin Solid Films 517 (7) (2009) 2519–2523.
[5] S. Das, K. C. Mandal, Materials Research Bulletin 57 (2014) 135–139.
[6] G. Altamura & all, Journal of Renewable and Sustainable Energy 6 (2014), 011401;
[7] K. Ito & T. Nakazawa, (1988) Japanese Journal of Applied Physics, 27, 2094–2097.
[8] M. Green, K. Emery, Y. Hishikawa, W. Warta & E. Dunlop, (2014) Solar cell efficiency tables (version 43). Progress in Photovoltaics, 22, 1–9.
[9] Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. & Mitzi, D.B. (2013) Advanced Energy Materials, published online November 2013, doi: 0.1002/aenm.201301465 (2013)
[10] T. Eguchi, T. Maki, S.Tajima, T.Ito and T. Fukano. Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November 2011: 4D-3P-24.
[11] W. Shockley, H.J. Queisser, J. Appl. Phys., 32 (1961) 510-519.
[12] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh1, J. Y. Kim & J Moon, (2013) SCIENTIFIC REPORTS | 3: 3069 | DOI: 10.1038/srep03069
[13] S. J. Fonash; Solar Cell Device, Physics, ACADEMIC PRESS ,1981
[14] C. Snowden, Introduction to semiconductor device modeling, World Scientific, 1986.
[15] M. Burgelman, J. Marlein, Proceedings of the 23rd European Photovoltaic Conference,
Valencia, Spain (2008) 2151-2155.
[16] A. Morales-Acevedo, Energy Procedia 2 (2010) 169–176
[17] M. Burgelman, P. Nollet and S. Degrave, Thin Solid Films, (2000) 361-362, 527-532.
[18] E. A. Lunda and M.A. Scarpulla, Proc. of SPIE Vol. 8620 862015- Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/28/2013
[19] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey and S. Guha, Prog. Photovolt: Res. Appl. 2013; 21:72–76
[20] Chen, S., Gong, X. G., Walsh, A. & Wei, S. H. (2009), Applied Physics Letters, 94, 041903-1-3.
[21] J.Paier, R.Asahi, A. Nagoya. &G. Kresse, (2009), Physical Review B, 79,115126-1-8.
[22] Chen, S., Gong, X. G., Walsh, A. & Wei, S. H. (2009), Physical Review B, 79, 165211-1-10.
[23]Z-Y. Zhao, Q-L. Liu, X. Zhao, Journal of Alloys and Compounds (2014), jallcom.2014.08.213
[24] Ingrid Repins, Nirav Vora, Carolyn Beall, Su-Huai Wei, Yanfa Yan, Manuel Romero, Glenn Teeter, Hui Du, Bobby To, Matt Young, and Rommel Noufi, Materials Research Society Spring Meeting San Francisco, California (2011), NREL/CP-5200-51286
[25] Persson, C., Journal of Applied Physics 107(5), 053710 (2010). (a virifier)
[26] Nagaoka, A., Yoshino, K., Taniguchi, H., Taniyama, T. & Miyake, H. (2012). Journal of Crystal Growth, 341, 38−41.
[27] Wibowo, R. A., Lee, E. S., Munir, B. & Kim, K. H. (2007). Physica Status Solidi A, 204, 3373−3379.
[28] J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu, Journal of Alloys and Compounds 511 (2012) 129–132.
[29] S. Chen, A. Walsh, J. Yang, X. G. Gong, L. Sun, P.Yang, J.Chu, and S.Wei, PHYSICAL REVIEW B 83, 125201 (2011)
[30] A.Nagoya, R. Asahi and G.Kresse, Journal of Physics: Condensed matter 23(40), 404203 (2011).(verf)
[31] R.Haight, A. Barkhouse, O. Gunawan,B. Shin, M.Copel, M,Hopstaken, and D.B Mitzi, Applied Physics Letters 98(25), 253502 (2011).

Downloads

Published

2020-10-28

How to Cite

MESSEI, N. INFLUENCE OF ABSORBER LAYER GRADUAL GAP PROFILE ON Cu2ZnSn(S1-Y SeY )4 SOLAR CELL EFFICIENCY: NUMERICAL STUDY. Journal of Fundamental and Applied Sciences, [S. l.], v. 13, n. 1, p. 385–399, 2020. DOI: 10.4314/jfas.v13i1.20. Disponível em: https://jfas.info/index.php/JFAS/article/view/821. Acesso em: 30 jan. 2025.

Issue

Section

Articles