NUMERICAL ANALYSIS OF AN INTEGRATED SOLAR COOLING AND HEATING SYSTEM IN INDIVIDUAL HOUSE IN DIFFERENT ALGERIAN CLIMATES

Authors

  • O. Halloufi Department Génie Climatique, University of Constantine 1 (Mentouri Brothers) Constantine; Algeria
  • A. Kaabi Department Génie Climatique, University of Constantine 1 (Mentouri Brothers) Constantine; Algeria
  • Md. Chougui Department Génie Climatique, University of Constantine 1 (Mentouri Brothers) Constantine; Algeria

DOI:

https://doi.org/10.4314/jfas.v13i2.12

Keywords:

individual house; solar heating and cooling; solar energy; TRNsys; climatic.

Abstract

There is a growing concern about energy use in Algeria. With rapid building development programs and improvements of the living conditions, building sector is will continue to be a major energy end-user. Main energy needs in buildings are due to heating and/or cooling, depending on local climatic conditions and type of building. In this paper. The primary aim was to analyze in two aspects – heating load, and cooling load of individual house energy consumption in the major climatic zones in Algeria. The individual house used heating and cooling solar system. The system performance was simulated using TRNsys program. This solar heating and cooling system incorporates between 89 m2 and 170 m2 of flat plate double glazed solar collectors provide solar energy contribution during both the heating and the cooling seasons; between 13.28 kW and 25.11 KW single effect, water– lithium bromide (H2O/LiBr) absorption chiller, for space cooling and heating, this system is the smallest solar heating and cooling system in the world.

Downloads

Download data is not yet available.

References

[1] Dargan S, Kumar M. A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities, Expert Syst. Appl., 2020, 143, doi: 10.1016/j.eswa.2019.113114
[2] Sharma S, Dubey S R, Singh S K, Saxena R, Singh R K. Identity verification using shape and geometry of human hands, Expert Sys. Appl., 2015, 42(2), 821-832, doi: 10.1016/j.eswa.2014.08.052
[3] Miroslav B, Grd P, Fotak T. Basic Principles and Trends in Hand Geometry and Hand Shape Biometrics, Article. Intech, 2012, pp. 77-99, doi: 10.5772/51912
[4] Klonowski M, Plata M, Syga P. User authorization based on hand geometry without special equipment, Pattern Recogn., 73, 2018, 189-201, doi: 10.1016/j.patcog.2017.08.017
[5] Barra S, Marsico M D, Nappi M, Narducci P, Riccio D. A hand-based biometric system in visible light for mobile environments, Inform. Sciences, 479, 2019, 472-485, doi: 10.1016/j.ins.2018.01.010
[6] Firas M, Salih Z. Authentication system depends on hand geometry using backpropagation neural network, JITBM & ARF. 2014, Université Polytechnique Iraq
[7] Burgues J, Fierrez J, Ramos D, Ortega-Garcia J. Comparison of Distance-Based Features for Hand Geometry Authentication. In: Fierrez J, Ortega-Garcia J, Esposito A, Drygajlo A, Faundez-Zanuy M (eds) Biometric ID Management and Multimodal Communication. BioID 2009. Lecture Notes in Computer Science, 5707. Springer, Berlin, Heidelberg, 2009
[8] Gross R, Li Y, Sweeney L, Jiang X, Xu W, Yurovsky D. Robust Hand Geometry Measurements for Person Identification using Active Appearance Models, IEEE, 2007, 1st IEEE International Conference on Biometrics: Theory, Applications, and Systems, doi: 10.1109/BTAS.2007.4401936
[9] Goh M K O, Connie T, Teoh A B J. A contactless biometric system using multiple hand features, J. Vis. Commun. Image R., 23(7), 2012, 1068-1084, doi: 10.1016/j.jvcir.2012.07.004
[10] Shawkat S A, Lateef Al-Badri K S, Turki A I. The new hand geometry system and automatic identification, Period. Eng. Nat. Sci., 7(3), 2019, 996-1008, doi: 10.21533/pen.v7i3.632
[11] Appiah O, Asante A, Hayfron-Acquah J B. Improved approximated median filter algorithm for real-time computer vision applications, J. King Saud Univ., Comp. & Info. Sci., 2020, doi: 10.1016/j.jksuci.2020.04.005
[12] Singh R, Vatsa M, Noore A. Improving verification accuracy by synthesis of locally enhanced biometric images and deformable model, Signal Processing, 87(11), 2007, 2746-2764, doi: 10.1016/j.sigpro.2007.05.009
[13] Otsu N. A threshold selection method from gray-level histograms, IEEE Trans. Sys., Man., Cyber., 9,‎ 1979, 62–66, doi: 10.1109/TSMC.1979.4310076
[14] Gonzalez R C, Woods R E, Eddins S L. Digital Image Processing Using MATLAB, New Jersey, Pearson Prentice Hall, 2004.
[15] Matos H, Oliveira H.P, Magalhães F. Hand-Geometry Based Recognition System. In: Campilho A., Kamel M. (eds) Image Analysis and Recognition, ICIAR 2012, Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-31298-4_5
[16] Ahuja M K, Singh A. (2015, Mar). A survey of hand geometry recognition. Ijarcsms. 3(3), 2015, 312-318
[17] Kolountzakis M N, Kutulakos K N, Fast computation of the Euclidian distance maps for binary images, Inform. Process. Lett., 43(4), 1992, 181-184, doi: 0.1016/0020-0190(92)90197-4
[18] Davydov V A. On Application of the Modulus Metric to Solving the Minimum Euclidean Distance Decoding Problem, Probl. Inf. Transm. 55, 2019, 145–151, doi: 10.1134/S0032946019020030
[19] Ohzeki K, Takatsuka M, Kajihara M. Hirakawa Y, Sato K. On the false rejection ratio of face recognition based on automatic detected feature points, Pattern Recognit. Image Anal. 26, 2016, 379–384, doi: 10.1134/S1054661816020073
[20] Ali S S, Baghel V S, Ganapathi I I, Prakash S. Robust biometric authentication system with a secure user template, Image Vision Comput., 104, 2020, doi: 10.1016/j.imavis.2020.104004
[21] Slooten K. Likelihood ratio distributions and the (ir) relevance of error rates, Forensic Sci. Int-Gen., 44, 2020, doi: 10.1016/j.fsigen.2019.102173
[22] Bapat A, Kanhangad V. Segmentation of hand from cluttered backgrounds for hand geometry biometrics, IEEE Region 10 Symposium, 2017, doi: 10.1109/TENCONSPRING.2017.8070016
[23] Bulatov Y, Jambawalikar S, Kumar P, Sethia S. Hand recognition using geometric classifiers, Lect. Notes Comput. Sc., 3072, 2004, 753-760, doi: 10.1007/978-3-540-25948-0_102
[24] Muthukumar A, Kavipriya A. A biometric system based on Gabor feature extraction with SVM classifier for Finger-Knuckle-Print, Pattern Recogn. Lett., 125, 2019, 150-156, doi: 10.1016/j.patrec.2019.04.007
[25] Hanley J A, McNeill B J. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve, Radiol., 143 (1), 1982, 29–36, doi: 10.1148/radiology.143.1.7063747
[26] Harrar K, Jennane R, Trabecular texture analysis using fractal metrics for bone fragility assessment, structure, 9(9), 2015, 683-688, doi: 10.5281/zenodo.1108242
[27] Sanchez-Reillo R, Sanchez-Avila C, Gonzalez-Marcos A. Biometric identification through hand geometry measurements, IEEE T. Pattern Anal., 22(10), 2000, 1168–1171, doi: 10.1109/34.879796
[28] Wong L, Shi P. Peg-free hand geometry recognition using hierarchical geometry and shape matching, in Proceedings of the IAPR Workshop on Machine Vision Applications, Nara, Japan, 2002, 281–284.
[29] Morales A, Ferrer M, Díaz F, Alonso J, Travieso C. Contact-free hand biometric system for real environments, in: Proceedings of the 16th European Signal Processing Conference (EUSIPCO), Laussane, Switzerland, 2008.
[30] Aundez-Zanuy M. Biometric verification of humans by means of hand geometry. In: 39th Annual 2005 International Carnahan Conference on Security Technology CCST, 2005, 61–67, doi: 10.1109/CCST.2005.1594816
[31] Harrar K, Khider M. Texture analysis using multifractal spectrum, International Journal of Modeling and Optimization 4 (4), 2014, 336-341, doi: 10.7763/IJMO.2014.V4.396.

Downloads

Published

2021-02-21

How to Cite

HALLOUFI, O.; KAABI, A.; CHOUGUI, M. NUMERICAL ANALYSIS OF AN INTEGRATED SOLAR COOLING AND HEATING SYSTEM IN INDIVIDUAL HOUSE IN DIFFERENT ALGERIAN CLIMATES. Journal of Fundamental and Applied Sciences, [S. l.], v. 13, n. 2, p. 845–863, 2021. DOI: 10.4314/jfas.v13i2.12. Disponível em: https://jfas.info/index.php/JFAS/article/view/980. Acesso em: 30 jan. 2025.

Issue

Section

Articles