COMPUTATIONS OF TURBULENT NON-PREMIXED COMBUSTION AND MODELING OF FLAME WALL INTERACTION

Authors

  • R. Renane Laboratory of aeronautical sciences, institute of aeronautics and space studies, University of Blida1, Algeria
  • R. Allouche Laboratory of aeronautical sciences, institute of aeronautics and space studies, University of Blida1, Algeria
  • S. Laazab Laboratory of aeronautical sciences, institute of aeronautics and space studies, University of Blida1, Algeria
  • A. Nour Laboratory of engines dynamics and vibroacoustics, UMBB Algeria

DOI:

https://doi.org/10.4314/jfas.v11i2.4

Keywords:

Numerical simulation, Diffusion turbulent flame, Combustion chamber, Thermoelastic stress.

Abstract

ABSTRACT

The aim of this work is to simulate the thermoelastic behavior of the wall of the combustion chamber of the ALLISON-T56 turboprop under the influence of dynamic loads and turbulent diffusion flame. This work is presented in two sections:  The first step is to simulate and analyze the flame structure and determine for given fuel flow and preheating temperature of fresh gas the behavior of the thermodynamic parameters of combustion. The fuel used in our study is kerosene. The numerical approach is based on the resolution of basic equations of turbulent combustion using Ansys-Fluent software where the turbulence model viscous-SST k-omega is chosen. In the second step, the thermoelastic behavior of the wall of the combustion chamber is simulated using Ansys-Fluent code. A brief reminder is given of the thermoelastic theory.The simulation results are presented and discussed in the last section. A possible modifications are proposed in this study, at the dome wall and also at the combustor dilution holes, with the aim of improving combustion and increasing the service life of the combustion chamber and the engine.The numerical results is validated by the experimental results realized on the turboprop engine Allison-T56 test bench of Air-Algerie Company, a good agreement is observed between the two results.  

Keywords: Numerical simulation, Diffusion turbulent flame, Combustion chamber, Thermoelastic stress

Downloads

Download data is not yet available.

References

[1] R. Borghi, P.Clavin, A.Linan,P.Pelcé & G.I.Sivashinsky, Modélisation des phénomènes de combustion, Paris 1985.
[2] R. Rebeh, M.Alliche et M.Mamou, Validation des modèles de turbulence pour la simulation des écoulements turbulents de l’air autour d’un obstacle à section carrée, Second International Conférence on Applied Energetics and Pollution, 2014 Algerie.
[3] Jean-Pierre SAWERYSYN, « la combustion du bois et ses impacts sur la qualité de l’air » Air Pur - N°81, Lille France, 2012.
[4] R. RENANE «Caractérisation et modélisation d’une chambre de combustion tubulaire sous l’influence des charges dynamique et de combustion » Thèse de doctorat, UMBB Algerie 2013.
[5] Yves D'Angelo, « Analyse et simulation numérique de phénomènes liés à la combustion supersonique », Thèse, ENPC France, 1994.
[6] Matthieu Rullaud, « modélisation de la combustion turbulente via une méthode de tabulation de la cinétique chimique détaillée couplée à des fonctions densités de probabilité. Application aux foyers aéronautiques » Thèse, INSA de Rouen France 2004.
[7] Lars Davidson, « An Introduction to Turbulence Models », Chalmers University Of Technology, Goteborg, Sweden, November 2003.
[8] F.W. Skidmore, D.R. Hunt, P.N. Doogood, “The reduction of smoke emissions from allison t56 engine “, Propulsion Report 182, AUSITALIA, Mars 1990.
[9] Douvi C. Eleni, Tsavalos I. Athanasios and Margaris P. Dionissios, ” Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil”, Journal of Mechanical Engineering Research Vol. 4(3), pp. 100-111, March 2012, DOI: 10.5897/JMER11.074.
[10] John H.Lienhard IV, John H.Lienhard V, A Heat transfer textbook, third ed, Cambridge U.S.A 2001.
[11] Yogesh Jaluria, Kenneth E, Torrance, “Computational Heat transfer” ed Taylor & Francis, second edition, New York 2003.
[12] P.Amiot « Thermodynamique » Scientifique WorkPlace, Université de Laval, Canada 2006.
[13] Libuse Sykorova, Oldrich Suba, « The transient temperature field simulation of polymeric materials during Laser Machining », International Journal of Mechanics, Issue 3, Vol.5, 2011.
[14] Engine-Virtual-Training, https://www.behance.net/gallery/1643476/T56
[15] J.M Cros, Z.Q. Feng, Aéroélasticités (cours), Université d’Evry-Val d’Essonne, septembre 2009.
[16] Roland FORTUNIER, « Comportement Mécanique des Matériaux » Ecole Nationale Supérieure des Mines Saint-Etienne 2009.
[17] Manuelita BONADIES, «Thermoelastic stress analysis for linear thermoelastic bodies » Department of Mathematics, University of Turin, ITALY, Vol. 65, 2, 2007.
[18] W. D. KINGERY, Factors affecting thermal stress resistance of ceramic materials, Journal of the American ceramic society, Vol. 38, issue 1, 1955.
[19] Peigne, Philippe. Resistance aux chocs thermiques des ceramiques thermomecaniques. Thèse. Villeurbanne : Institut National des Sciences Appliquées de Lyon, 1991
[20] Jean salençon, Mécanique des Milieux Continus (Concept Généraux), Edition Ecole polytechniques, Palaiseau 2007.
[21] Nezih Mrad, Development of CFD capabilities in Xact life, Technical report, Life prediction technologies, Otawa Canada 2015.
[22] F.W.Skidmore, D.R. Hunt, P.N.Doogood « The reduction of smoke emissions from Allison T56 engine », Propulsion report 182, Aeronautical research laboratory, Royal Australian Air force, Melbourne, Vectoria, March 1990.
[23] F.W.Skidmore, “The influence of gas turbine combustor fluid mechanics on smoke emissions” , Thesis, Institute of thecnology Victoria, Australia, Dec 1988.
[24] Bredberg J., Peng S.H, Davidson L, “An improved k- turbulence model applied to recirculating flows”. International journal of Heat and Fluid Flow 23,6(2002),731-743.
[25] Warner Martiensser, Hans Warlimont “ Springer Handbook of condensed matter and matterials data, Springer, Frankfurt Sept 2004.
[26] Gouws J.J, Morris R.M and Visser J.A, “ Modelling of a gas turbine combustor using a network solver”, South African journal of science 102, Nov/Dec 2006.

Downloads

Published

2018-12-25

How to Cite

RENANE, R.; ALLOUCHE, R.; LAAZAB, S.; NOUR, A. COMPUTATIONS OF TURBULENT NON-PREMIXED COMBUSTION AND MODELING OF FLAME WALL INTERACTION. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 2, p. 605–622, 2018. DOI: 10.4314/jfas.v11i2.4. Disponível em: https://jfas.info/index.php/JFAS/article/view/174. Acesso em: 28 jan. 2025.

Issue

Section

Articles