SIMULATION OF THE THERMOMECHANICAL LOADS AND CRACK PROPAGATION OF DIFFERENT DIESEL ENGINE PISTON CROWN MATERIALS BY THE XFEM METHOD
DOI:
https://doi.org/10.4314/jfas.v11i2.33Keywords:
materials; cracking; stress; piston; diesel; XFEMAbstract
This study concerns the dynamic behavior of the piston of a Deutz F8L413 diesel engine. The objective is to simulate by the extended finite element method (XFEM) the thermomechanical behavior of different piston materials. This study is conducted to evaluate the applied thermal loads and pressure at the end of compression. From a numerical simulation, the stresses acting on the structure and the behavior of the cracked material piston, governed by its global elastic behavior and quantified by the stress intensity factor are determined.
Downloads
References
[2] Söderfjäll M, M.Herbst H, Larsson R, Almqvist A. Influence on friction from piston ring design, cylinder liner roughness and lubrican properties. December (2017) 272-284(116).
[3] Wang M, Pang J C, Zhang M X, Liu H Q, Li S X, Zhang Z F. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy. Materials Science and Engineering. A (715) 7 February 62-72. Matched ISSN : 0921-5093 (2018).
[4] Dai H, Huang R, Li G, Tang J, Huang S. Memory test system for piston steady-state temperature measurement. Applied Thermal Engineering. (110)5 January 436-441. Matched ISSN : 1359-4311 (2017).
[5] Lu Y, Zhang X, Xiang P, Dong D. Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Applied Thermal Engineering. (113) 25 February 796-812. Matched ISSN : 1359-4311 (2017).
[6] Szmytka F, Salem M, Rézaï-Aria F, A.Oudin. Thermal fatigue analysis of automotive Diesel piston: Experimental procedure and numerical protocol International Journal of Fatigue. (73) April 48-57. Matched ISSN : 0142-1123 (2015).
[7] Yu.Dudareva N, R.D.Enikeev, V.Yu.Ivanov. Thermal Protection of Internal Combustion Engines Pistons. Procedia Engineering. (206) 1382-1387 (2017).
[8] Gehlot R, Tripathi B. Thermal analysis of holes created on ceramic coating for diesel engine piston. Case Studies in Thermal Engineering. (8) September 291-299 (2016).
[9] Rozhdestvensky Y, Lazarev E, Doikin A. Effect of the Heat Insulating Coating of the Piston Crown on Characteristics of the “Piston-Cylinder Liner” Pair Procedia Engineering. (150) 541-546 (2016).
[10] Zhao Z, Wang S, Zhang S, Thermodynamic and energy saving benefits of hydraulic free-piston engines. Energy Volume 102, 1 May 650-659 (2016).
[11] RANC N. 'Couplage thermomécanique' Technique de l'Ingénieur, référence AF5 042, juil., 2003.
[12] Singiresu S. Rao. 'The finite element method in engineering fourth edition’, Elsevier Science & Technology Books, (2004).
[13] Reddy J N and D.k Garthing.,’ The finite element method in heat transfer and fluid dynamic’, Edition C RC press (1994).
[14] Reddy J N , 'Finite element method introduction', Edition Mc Graw-Hill 1993.
[15] David .V. hutton.,’ Fundamental of finite element analysis Edition MacGraw- Hill, NY 10020, New York (2004).
[16] Liu G R, Quek. S,'The Finite Element Method:A Practical Course', Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford OX2 8DP,(2003).
[17] Christian CLOS,’ Technologie des moteurs alternatifs à combustion interne 'technique d’ingénieur, volume B2, (2000).
[18] Christian CLOS,’ Technologie des moteurs alternatifs à combustion interne technique d’ingénieur, volume B2, (2000).
[19] LEMAIRE M, « Moteurs À Combustion Interne », Polycopié du cours des moteurs thermiques, École Centrale de Nantes, Nantes (2003).
[20] MORKOS M. « Moteurs À Combustion Interne », Polycopié du cours des moteurs thermiques, U. Libanaise, Beyrouth 2002. ourth edition’, Elsevier Science & Technology Books, (2004.