DETERMINATION OF TRACE RESIDUES LEVEL OF PESTICIDES IN SOME VEGETABLES GROWING IN ALGERIA BY GC/µECD AND GC/MS

Authors

  • S. Mebrouki Laboratoire de Valorisation et Promotion des Ressources Sahariennes, Faculté des Mathématiques et Sciences de la Matière, Université Kasdi Merbah, Ouargla, Algérie.
  • H. Zerrouki Laboratoire de Valorisation et Promotion des Ressources Sahariennes, Faculté des Mathématiques et Sciences de la Matière, Université Kasdi Merbah, Ouargla, Algérie.
  • M. L. Belfar Laboratoire de Valorisation et Promotion des Ressources Sahariennes, Faculté des Mathématiques et Sciences de la Matière, Université Kasdi Merbah, Ouargla, Algérie.
  • A. Douadi Laboratoire de Valorisation et Promotion des Ressources Sahariennes, Faculté des Mathématiques et Sciences de la Matière, Université Kasdi Merbah, Ouargla, Algérie.
  • Y. Moussaoui Faculté de Médecine, Université Kasdi Merbah, Ouargla, Algérie

DOI:

https://doi.org/10.4314/jfas.v13i1.24

Keywords:

Pesticides residue; Hot pepper, Pepper; Tomato; Potato; GC/µECD; GC/MS.

Abstract

An analytical multiresidue method for the simultaneous determination of various classes of pesticides in vegetables (tomato, pepper, hot pepper and potato) was developed. Vegetable samples are extracted with acetonitrile.

Final determination was made by gas chromatography with µ-Electron Capture Detection (µ-ECD) for organochloride pesticides. Organophosphorus, pyrithrinoids and other pesticides analysis was carried out by gas chromatography coupled with mass spectrometry in the selected ion monitoring (SIM) mode. The identification of compounds was based on retention time and on comparison of the primary and secondary ions. Recovery studies were performed at various fortification levels of each compound and the recoveries obtained ranged from 70% to 127 % with relative standard deviations lower than 8%. The method showed good linearity over the range studied and the detection and quantification limits for the pesticides studied varied from 0.015 to 0.030 µg.g-1 and 0.05 to 0.1 µg.g-1, respectively. The proposed method was used to determine pesticides levels in peppers, hot pepper and tomatoes grown in multichapelle greenhouses at Biskra region and potato grown at Setif region in Algeria.

Downloads

Download data is not yet available.

References

[1] Alexandratos, N., and J. Bruinsma. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. FAO, Rome.
[2] Polyxeni Nicolopoulou-Stamati, Sotirios Maipas, Chrysanthi Kotampasi, Panagiotis Stamatis and Luc Hens. 2016. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in public health, 4, 1-8, 2016.
[3] World Health Organization. Public Health Impact of Pesticides Used in Agriculture. England: World Health Organization (1990).
[4] Alewu B, Nosiri C. Pesticides and human health. In: Stoytcheva M, editor. Pesticides in the Modern World Effects of Pesticides Exposure. InTech (2011). p. 231–50. Available from: http://www.intechopen.com/books/pesticides-in-the-modern-world-effects-of-pesticides-exposure/ pesticide-and-human-health.
[5] Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, et al. Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect (2006) 114:40–50. doi:10.1289/ ehp.8051.
[6] Pirsaheb M, Limoee M, Namdari F, Khamutian R. Organochlorine pesticides residue in breast milk: a systematic review. Med J Islam Repub Iran (2015) 29:228.
[7] Sanborn M, Kerr KJ, Sanin LH, Cole DC, Bassil KL, Vakil C. Non-cancer health effects of pesticides. Systematic review and implications for family doctors. Can Fam Physician (2007) 53:1712–20.
[8] Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health (2011) 8:2265–2203. doi:10.3390/ijerph8062265.
[9] Semchuk KM, Love EJ, Lee RG. Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology (1992) 42:1328–35. doi:10.1212/WNL.42.7.1328. [10] Thakur DS, Khot R, Joshi PP, Pandharipande M, Nagpure K. Glyphosate poisoning with acute pulmonary edema. Toxicol Int (2014) 21:328–30. doi:10.4103/0971-6580.155389.
[11] Gunnell D, Eddleston M, Phillips MR, Konradsen F. The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health (2007) 7:357. doi:10.1186/1471-2458-7-357.
[12] McGill AE, Robinson J. Organochlorine insecticide residues in complete prepared meals: a 12-month survey in S.E. England. Food Cosmet Toxicol (1968) 6:45–57. doi:10.1016/0015-6264(68)90080-1
[13] Cabras P, Angioni A. Pesticide residues in grapes, wine, and their processing products. J Agric Food Chem (2000) 48:967–73. doi:10.1021/jf990727a
[14] Zambonin CG, Quinto M, De Vietro N, Palmisano F. Solid-phase microextraction – gas chromatography mass spectrometry: a fast and simple screening method for the assessment of organophosphorus pesticides residues in wine and fruit juices. Food Chem (2004) 86:269–74. doi:10.1016/j. foodchem.2003.09.025.
[15] Burnett M, Welford R. Case study: coca-cola and water in India: episode 2. Corp Soc Responsib Environ Mgmt (2007) 14:298–304. doi:10.1002/csr.97
[16] Lorenzin M. Pesticide residues in Italian ready-meals and dietary intake estimation. J Environ Sci Health B (2007) 42:823–33. doi:10.1080/03601230701555021
[17] Nag SK, Raikwar MK. Persistent organochlorine pesticides residues in animal feed. Environ Monit Assess (2011) 174:327–35. doi:10.1007/s10661-010-1460-1.
[18] Witczak A, Abdel-Gawad H. Assessment of health risk from organochlorine pesticides residues in high-fat spreadable foods produced in Poland. J Environ Sci Health B (2014) 49:917–28. doi:10.1080/03601234.2014.951574.
[19] Chourasiya S, Khillare PS, Jyethi DS. Health risk assessment of organochlorine pesticide exposure through dietary intake of vegetables grown in the periurban sites of Delhi, India. Environ Sci Pollut Res Int (2015) 22:5793–806. doi:10.1007/s11356-014-3791-x.
[20] Nougadére A, Sirot V, Kadar A, Fastier A, Truchot E, Vergnet C, et al. Total diet study on pesticide residues in France: levels in food as consumed and chronic dietary risk to consumers. Environ Int (2012) 45:135–50. doi:10.1016/j.envint.2012.02.001.
[21] Blaznik U, Yngve A, Eržen I, Hlastan Ribič C. Consumption of fruits and vegetables and probabilistic assessment of the cumulative acute exposure to organophosphorus and carbamate pesticides of schoolchildren in Slovenia. Public Health Nutr (2015) 19(3):557–63. doi:10.1017/S1368980015001494
[22] Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect (2007) 115:98–105. doi:10.1289/ehp.9357.
[23] Damgaard IN, Skakkebaek NE, Toppari J, Virtanen HE, Shen H, Schramm KW, et al. Persistent pesticides in human breast milk and cryptorchidism. Environ Health Perspect (2006) 114:1133–8. doi:10.1289/ehp.8741.
[24] Buscail C, Chevrier C, Serrano T, Pelé F, Monfort C, Cordier S, et al. Prenatal pesticide exposure and otitis media during early childhood in the PELAGIE mother-child cohort. Occup Environ Med (2015) 72(12):837–44. doi:10.1136/oemed-2015-103039
[25] Lu D, Wang D, Ni R, Lin Y, Feng C, Xu Q, et al. Organochlorine pesticides and their metabolites in human breast milk from Shanghai, China. Environ Sci Pollut Res Int (2015) 22:9293–306. doi:10.1007/s11356-015-4072-z
[26] Barbosa, P. G. A., Martins, F. I. C. C., Lima, L. K., Milhome, M. A. L., Cavalcante, R. M., & Nascimento, R. F. (2018). Statistical analysis for quality adjustment of the analytical curve for determination of pesticide multiresidue in pineapple samples. Food Analytical Methods, 11(2), 466–478.
[27] Ferronato, G., Viera, M. S., Prestes, O. D., Adaime, M. B., & Zanella, R. (2018). Determination of organochlorine pesticides (OCPs) in breast milk from Rio Grande do Sul, Brazil, using a modified QuEChERS method and gas chromatography–negative chemical ionisation-mass spectrometry. International Journal of Environmental Analytical Chemistry, 98(11), 1005–1016.
[28] Cang, T., Sun, C., Zhao, H., Tang, T., Zhang, C., Yu, R., Zhao, X. (2018). Residue behavior and risk assessment of imidacloprid applied on greenhouse-cultivated strawberries under different application conditions. Environmental Science and Pollution Research, 25(5), 5024–5032.
[29] Guedes, J. A. C., Silva, R. O., Lima, C. G., Milhome, M. A. L., & Nascimento, R. F. (2016). Matrix effect in guava multiresidue analysis by QuEChERS method and gas chromatography coupled to quadrupole mass spectrometry. Food Chemistry, 199, 380–386.
[30] Alcântara, D. B., Paz, M. S. O., Rodrigues, T. H. S., Fernandes, T. S. M., Barbosa, P. G. A., Loiola, A. R., ... Nascimento, R. F. (2018). Organophosphorus pesticide in Sapodilla (Manilkara zapota) fruit. Journal of the Brazilian Chemical Society, 29(10), 2180–2188.
[31] Silva, V. P. A., Paz, M. S. O., Cavalcante, R. M., & Nascimento, R. F. (2017). Strategy for correction of matrix effect on the determination of pesticides in water bodies using SPME-GC-FID. Journal of the Brazilian Chemical Society, 28(6), 1081–1090.
[32] Oiram, F. F., Alcântra, D. B., Rodrigues, T. H. S., Silva, L. M. A., Silva, E. O., Zocolo, G. J., & Brito, E. S. (2017). Development and validation of a reversed phase HPLC method for determination of anacardic acids in cashew (Anacardium occidentale) nut shell liquid. Journal of Chromatographic Science, 56(4), 300–306.
[33] Kouame Adou,Warren R. Bontoyan, and Paul J. Sweeney. Multiresidue Method for the Analysis of Pesticide Residues in Fruits and Vegetables by Accelerated Solvent Extraction and Capillary Gas Chromatography. J. Agric. Food Chem., Vol. 49, No. 9, 2001
[34] Yinhui Yang, Weijun Kong, Lianhua Zhao, Qiang Xiao, Hongmei Liu, Xiangsheng Zhao, Meihua Yang. A multiresidue method for simultaneous determination of 44organophosphorous pesticides in Pogostemon cablin and related products using modified QuEChERS sample preparation procedure and GC–FPD. Journal of Chromatography B, 974 (2015) 118–125.
[35] http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx
[36] Y Moussaoui, L Tuduri, Y Kerchich, BY Meklati, G Eppe. Atmospheric concentrations of PCDD/Fs, dl-PCBs and some pesticides in northern Algeria using passive air sampling Chemosphere 88 (3), 270-277
[37] http://www.aprifel.com/userfiles/file/pesticides_risques_securite_a.pdf

Downloads

Published

2020-11-07

How to Cite

MEBROUKI, S.; ZERROUKI, H.; BELFAR, M. L.; DOUADI, A.; MOUSSAOUI, Y. DETERMINATION OF TRACE RESIDUES LEVEL OF PESTICIDES IN SOME VEGETABLES GROWING IN ALGERIA BY GC/µECD AND GC/MS. Journal of Fundamental and Applied Sciences, [S. l.], v. 13, n. 1, p. 453–467, 2020. DOI: 10.4314/jfas.v13i1.24. Disponível em: https://jfas.info/index.php/JFAS/article/view/1047. Acesso em: 30 jan. 2025.

Issue

Section

Articles