ELECTROCHEMICAL BEHAVIOR OF ZINC ANODE IN ACIDIC ZINC ELECTROLYTE - INFLUENCE OF LEAD AS AN IMPURITY IN ZINC ANODIC DISSOLUTION

Authors

  • Habiba Kherrab-Boukezzata University of Boumerdes, Faculty of Science, Chemistry Department, 35000, Algeria
  • Naima Ghemmit-Doulache University of Boumerdes, Fibrous Polymers Treatment and Forming Laboratory, Faculty of Technology, 35000, Algeria
  • Moussa Bounoughaz Laboratory of Metallurgy, Nuclear Research Center of Draria, Algiers Algeria
  • Slimane Boutarfaia Laboratory of Metallurgy, Nuclear Research Center of Draria, Algiers Algeria

DOI:

https://doi.org/10.4314/jfas.1142

Keywords:

Zinc electrorefining process, impurity, pure Zn and Zn-1 % wt. Pb anodes, acidic solution, microstructure, anodic corrosion behaviours, passivation.

Abstract

Zinc is common metal used for steel protection. In this work, an alloy Zn-1 % wt. Pb was prepared by fusion at 500°C. The analysis of the corrosion behavior was studied with pure Zn anode as control in aerated solution of 0.9 M ZnSO4.7H2O + 1.63 M H2SO4 at 38°C.The effect of lead impurity on corrosion resistance of zinc anode in zinc electrorefining process was investigated using open circuit potential (OCP), Tafel plots, chronoamperometry at imposed constant anodic potential and electrochemical impedance spectroscopy (EIS) techniques. Samples were characterized by chemical analysis, optic microscope (OM) and X-ray diffraction (XRD). The results show that the lead impurity leads to degradation of the behavior of the alloy due to negative effect on the microstructure. Lead increases the corrosion rate and decreases the corrosion resistance of Zn-1 % wt. Pb alloy.

Downloads

Download data is not yet available.

Author Biography

Moussa Bounoughaz, Laboratory of Metallurgy, Nuclear Research Center of Draria, Algiers Algeria

This author is retired (no more permanent).

References

Boumediene. K. JaZairess. Quotidien d’Oran le 31-03-2012.

Yang. H.T, Guo. Z.C, Chen. B.M, Liu. H.R, et al. Electrochemical behavior of rolled Pb-0.8 % Ag anodes in acidic zinc sulfate electrolyte solution containing Cl-ions. Hydrometallurgy. (2014) 147, 148-156.

Sole. K.C. The influence and benefits of an upstream solvent-extraction circuit on the electrowinning of zinc in sulfate media. Research Gate. (2016), 1-9.

Zhou. X, Wang. S, Yang. J, et al. Effect of cooling ways on properties of Al / Pb-0.2 % Ag rolled alloy for zinc electrowinning. Trans. Non ferrous Met. Soc. China. (2017) 27, 2096-21

Diban. N, Mediavilla. R, Urtiaga. A, et al. Zinc recovery and waste sludge minimization from chromium passivation baths. Journal Hazardous Materials. (2011), 192, 801-807.

Chen. Y, Yech. H, Lo. N, et al. Electrodeposition of compact zinc from the hydrophobic brØnsted acidic ionic liquid-based electrolytes and the study of zinc stability along with the acidity manipulation. Electrochimica Acta http: dx.doi.org/10.1016/j.electacta.2017.01.013.

Ma. H.W, Matsubae. K, Nakajima. K, et al. Substance flow analysis of zinc cycle and current status of electric furnace dust management for zinc recovery in Taiwan. Resour. Conserv. Recycl. (2011) 56, 134-140.

Abkhoshk. E, Jorjani. E, Al Harahsheh. M.S, et al. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy. (2014) 149, 153-167.

Nady. H. Tricine [N- (Tri (hydroxymethyl) methyl) glycine] - A novel green inhibitor for the corrosion inhibition of zinc in neutral aerated sodium chloride solution. Egyptian Journal of Petroleum. (2016), 1-9.

Bakkar. A, Neubert. V. Recycling of cupola furnace dust : Extraction and electrodeposition of zinc in deep eutectic solvents. Journal of alloys and compounds. (2018). doi: 10.1016/j. jallcom.2018.08.246.

Luo. J.Z.P, Duan. N, Jiang. L, et al. Interpretation of material flow analysis results and a case study on cleaner production for waste water source reduction in a zinc electrolysis cellhouse. Journal of Cleaner Production. (2018). doi: 10.1016/j. jclepro.2018.01.146.

Qi. C, Ye. L, Max, et al. Life cycle assessment of the hydrometallurgical zinc production chain in China. Journal of Cleaner Production. (2017). doi: 10.1016/j. jclepro.2017.04.084.

Ares. A.E, Gassa. L.M. Corrosion susceptibility of Zn-Al alloys with different grains and dendritic microstructures in NaCl solutions. Corrosion Science. (2012) 59, 290-306.

Giménez-Romero. D, García-Jareño. J.J, Vicente. F. Analysis of an impedance function of zinc anodic dissolution. Journal Electroanalytical Chemistry. (2004) 57, 235-247.

Jha. M.K, Kumar. V, Singh. R.J. Review of hydrometallurgical recovery of zinc from industrial wastes, Resources. Conservation and Recycling. (2001) 33, 1-22.

Xueyi. G, Yuga. Z, Yu. S. Substance flow analysis in China. Resources. Conservation and Recycling. (2010) 54, 171-177.

Et Taouil. A, Mahmoud. M.M, Lallemand. F, et al. Corrosion protection by Sonoelectrodeposited organic films on zinc coated steel. Ultrasonics Sonochemistry. (2012) 19, 1186-1193.

Huajun. Z, Zhenghai. G, Yunpeng. Z. Electrorefining zinc dross in ammoniacal ammonium chloride system. Hudrometallurgy. (2008) 90, 8-12.

Yang. C.J, Park. S. Electrochemical behaviour of PbO2 nanowires array anodes in a zinc electrowinning solution. Electrochimica Acta. (2013) 86-94.

Taguchi. M, Takahashi. H, Nagai. M, et al. Chracteristics of Pb-based alloy prepared by powder rolling method as an insoluble anode for zinc electrowinning. Hydrometallurgy. (2013) 136, 78-84.

Herraiz-Cardona. I, Ortega. E, Pérez-Herranz. V. Evaluation of the Zn2+ transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Colloid and Interface Science. (2010) 341, 380-385.

Herrevo. D, Arias. P.L, Güemez. B, et al. Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning. Minerals Engineering. (2010) 23, 511-517.

Kaewmaneekul. T, Lothongkum. G. Effect of aluminium on the passivation of zinc-aluminium alloys in artifitial seawater at 80°C. Corrosion Science. (2013) 66, 67-77.

Möller. C.A, Friedrich. B. effect of As, Sb, Bi and oxygen in copper anodes during electrorefinin. IME Process Metallurgy and Metal Recycling. (2010) 1495-1510.

Rimaszeki. G, Kulcsar. T, Kekesi. T. Application of HCl solutions for recovering the high purity metal from tin scrap by electrorefining. Hydrometallurgy. (2012) 125-126, 55-63.

Liu. L, Tan. J, Liu. X. Reactive brazing of Al alloy to Mg alloy using zinc-based brazing alloy. Materials Letters. (2007) 61, 2373-2377.

Ren. X, Wei. Q, Hu. S, et al. The recovery of zinc from hot galvanizing slag in an anion- exchange membrane electrolysis reactor. Journal of Hazardous Materials. (2010) 181, 908-915.

Guessoum. K, Veys-Renaux. D, Rocca. E, et al. Corrosion behavior of zinc-cerium alloys: Role of intermetallic phases. Corrosion Science. (2011) 53, 1639-1645.

Noor. F, Wen. D. Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn). Journal of physics and chemistry of solids. (2015) 85,188-196.

Ma. R, Cheng. S, Zhang. X, et al. Oxygen evolution and corrosion behavior of low -MnO2- content Pb-MnO2 composite anodes for metal electrowinning. Hydrometallurgy. (2016) 159, 6-11.

Liu. Z, Li. R, Jiang. R, et al. Effects of Al addition on the structure and mechanical properties of Zn alloys. Journal of Alloys and Compounds. (2016) 687, 885-892.

Mathabatha. M.H, Popoola. A.P.I, Oladijo. O.P. Residual stresses and corrosion performance of plasma sprayed zinc-based alloy coating on mild steel substrate. Surface & Coatings Technology. (2016).

Safizadeh. F, Su. C, Ghali. E, Houlachi. G. The effect of lead and some operating parameters on cathode contamination during zinc electrowinning. Hydrometallurgy. (2017) 171, 69-76.

Alesary. H.F, Cihangir. S, Ballantyne. A.D. Influence of additives on the electrodeposition of zinc from a deep eutectic solven. Electrochimica Acta. (2019). doi: https://doi.org/10.1016/j.electacta.2019.02.090.

Mera. M.F, Rubio. M, Pérez. C.A, et al. SRµXRF and XRD study of the spatial distribution and mineralogical composition of Pb and Sb species in weathering crust of corroded bullets of hunting fields. Microchemical Journal. (2015) 119, 114-122.

El-Sayed. A., Mohran. H.S, Abdel Shafy Shilkamy. H. Effect of phosphoric acid concentration on conductivity of anodic passive film formed on surface of lead-indium alloy. Trans. Nonferrous Met. Soc. China. (2016) 26, 882-894.

Kim. E, Horckmans. L, Spooren. J, et al. Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues. HYDROM. (2017), pp. 4533.

Roche. M. Protection contre la corrosion des ouvrages maritimes pétroliers. Tome 1, premier fascicule I.E.P. France, 1978.

ASM International. Metallography and microstructures of zinc and its alloys. ASM Handbook. (2004) 9, 933-941.

Valdez. S, Genesca. J, Mena. B, et al. Journal of Materials Engineering and Performance. (2001) 10(5), 596-601.

Van den Bos. C, Schnitger. H.C, Zhang. X, et al. Influence of alloying elements on the corrosion resistance of rolled zinc sheet. Corrosion Science. (2006) 48, 1483-1499.

Wang. N, Wang. R, Peng. C, et al. Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5 % NaCl solution. Trans. Nonferrous Met. Soc. China. (2010) 20, 1936-1943.

Zohdy. K.M, Sadawy. M.M, Ghane. M. Corrosion behavior of leaded-bronze alloys in sea water. Materials Chemistry and Physics. (2014) 147, 878-883.

Zhang. W, Robichaud. M, Ghali. E, et al. Electrochemical behavior of mesh and plate oxide coated anodes during zinc electrowinning. Trans. Nonferrous Met. Soc. China. (2016) 36, 589-598.

Li. J, He. X, Hang. R, et al. Fabrication and corrosion behavior of TiO2 nanotubes on AZ91D magnesium alloy. Ceramics International. (2017) Ref CERI 15799.

Bounoughaz. M, Salhi. E, Benzine. K, Ghali. E, et al. A comparative study of the sacrificial anode. Journal of Materials Science. (2003) Volume 38N6, 1339-1445.

Jegannathan. S, Saukara Narayanan. T.S.N, Ravichandran. K, et al. Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests. Electrochimica Acta. (2005) 51, 247-256.

Rosalbino. F, Scavino. G, D Maccíò. D, et al. Influence of the alloying component on the corrosion behaviour of zinc in neutral aerated sodium chloride solution. Corrosion Science. (2014), 00436-3.

Begar A. Métallurgie extractive. Université de Biskra.

Mohammadi. M, et al. Development of Pb-MnO2 composite anodes for electrowinning application. Electrochemical and Corrosion Evaluations. March (2016).

Recéndiz. A, Nava. J.L, Lartundo-Rojas. L, et al. Characterization of the corrosion layers electrochemically formed on lead-silver/H2SO4 + Mn (II) Interface. J. Electrochem. Soc. (2009) vol. 156, no. 8, 231. doi: 10.1149/1.3142365.

Havery J.F, D. Paul S. Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-nentral NaCl solutions. [J]. Corrosion Science. (2010) 52, 1905-1914.

Badawy. W.A, Nady. H, Abd El-Hafez. G.M. Electrodeposited Zn-Ni alloys as promising catalysis for hydrogen production-preparation, characterization and electro-catalytic activity. Journal of Alloys and Compounds. (2017). doi: 10.1016 / j. jallcom. 2016.12.228.

Abd El-Lateef. H.M, El-Sayed. A, Mohran. H.S. Role of nickel alloying on anodic dissolution behaviour of zinc in 3.5% NaCl solution. Part Ⅱꓽ Potentiodynamic, potentiostatic and galvanostatic studies. Trans. Nonferrous Met. Soc. China. (2015) 25, 3152-3164.

Lee. M, Kim. Y, Lim. K, et al. Electrochemical evaluation of zinc and magnesium alloy coatings deposited on electrogalvanized steel by PVD. Trans. Nonferrous Met. Soc. China. (2013) 23, 876-880.

El-Sayed. A, Mohran. H.S, Abd El-Lateef. H.M. Effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution. Journal of Power Sources. (2010) 195, 6924-6936.

Ghemmit-Doulache. N, Benserradj. S. The Effect of surface treatments on the electrochemical behavior of Titanium alloy in seawater by electrochemical impedance spectroscopy (EIS). J. Mater. Environ. Sci. 6 (7) (2015). 1829-1833.

Kehar. S. and Ragësh Kumar. P. Electrosynthesis and impedance studies on zinc selenide. Electrochimica Acta. (1994) Vol 39, N°18, 2693-2697.

Nogueira Grosser. F, Gonçalves. R.S. Electrochemical evidence of caffeine adsorption on zinc surface in ethanol. Corrosion Science. (2008) 50, 2934-2938.

Kellou-Kerkouche. F, Benchettara. A, Amara. S. Effect of sodium dodecyl benzene sulfonate on the corrosion inhibition of Fe-1Ti-20C alloy in 0.5 M H2SO4. Materials Chemistry and Physics. (2008) 110, 26-33.

Yang. C.J, Ko. Y, Park. S. Fourier transform electrochemical impedance spectroscopic studies on anodic reaction of lead. Electrochimica Acta. (2012) 78, 615-622.

Shi. C, Shao. Y, Wang. Y, et al. Influence of submicron-sheet zinc phosphate synthesised by sol-gel method on anticorrosion of epoxy coating. Progress in Organic Coatings. (2018) 117, 102-117.

Yang. C, Zhang. Z, Tian. Z, et al. Influences of carboxymethyl cellulose on two anodised-layer structures of zinc in alkaline solution. Journal of Alloys and Compounds. (2018) 734, 152-162.

Bakhsheshi-Rad. H.R, Hamzah. E, Ismail. A.F, et al. In vitro degradation behaviour, antibacterial activity and cytotoxicity of TiO2-MAO/Zn HA composite coating on Mg alloy for orthopaedic implants. Sct (2017). doi: 10,1016/j. surfcoat. 2017.11.027.

Zomorodian. A, Garcia. M.P, Silva. T.M, et al. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 allo. Mater. Sci. Eng. C. (2015) 48, 434-443.

Liu. Y, Zhou. X, B. Stuart, et al. An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steel. Progress in Organic Coatings. (2016).

Zhang. P, Ó Keefe. T.J, Yu. P. Electrochemical characterization of the effects of impurities and organic additives in lead electrowinning from fluoborate electrolyte. Hydrometallurgy. (2001) 61, 207-221.

Hamlaoui. Y, Pedraza. F, Tifouti. L. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy. Corrosion Science. (2008) 50, 1558-1566.

Gu. X.N, Zheng. W, Cheng. Y, et al. A study on alkaline heat-treated Mg-Ca alloy for the control of the biocorrosion rat. Acta Biomater. (2009) 5, 2790-2799.

Montemor. M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. (2014) 258, 17-37.

Sankara Narayanan. T.S.N, Park. S, Lee. M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. (2014) 60, 1-71.

Vida. T.A, Conde. A, Freitas. E.S. Directionally solidified dilute Zn-Mg alloys: Correlation between microstructure and corrosion properties. Journal of Alloys and Compounds. (2017) 723, 536-547.

Downloads

Published

2022-04-30

How to Cite

KHERRAB-BOUKEZZATA, H.; GHEMMIT-DOULACHE, N.; BOUNOUGHAZ, M.; BOUTARFAIA, S. ELECTROCHEMICAL BEHAVIOR OF ZINC ANODE IN ACIDIC ZINC ELECTROLYTE - INFLUENCE OF LEAD AS AN IMPURITY IN ZINC ANODIC DISSOLUTION. Journal of Fundamental and Applied Sciences, [S. l.], v. 14, n. 2, p. 391–416, 2022. DOI: 10.4314/jfas.1142. Disponível em: https://jfas.info/index.php/JFAS/article/view/1142. Acesso em: 31 jan. 2025.

Issue

Section

Articles