INTEGRATION OF REMOTE SENSING AND GEOPHYSICAL METHODS FOR STRUCTURAL AND LITHOLOGICAL MAPPING IN A PART OF PRECAMBRIAN BASEMENT ROCKS, NORTHERN NIGERIA
DOI:
https://doi.org/10.4314/jfas.v14i1.9Keywords:
Landsat 8 OLI, Aeromagnetic, Remote sensing, Radial Sounding, LineamentAbstract
Landsat 8 OLI data, Aeromagnetic data, and Radial Vertical Electrical Sounding (RVES) survey data were integrated to map lithology, delineate structures and their trends, and delineate possible mineralized zones in the area. Landsat 8 OLI data yielded a colour composite image, and surface lineaments map of the area. The aeromagnetic maps were utilized to map lithology, and subsurface structures. A radial survey confirmed the fractures derived from the structural maps. Results classified the area into three geological units viz: migmatite, banded gneiss, and quartzite. The banded gneiss is the most deformed and contains series of structures that are significant for mineral and groundwater explorations. Clay alteration is the most dominant in the area, followed by iron oxide alterations. Lineament alignments are N-S, NNW-SSE, NNE-SSW, NE-SW, and E-W directions.
Downloads
References
Pour A.B and Hashim, M. ASTER, ALI, and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus. 2015, 3(1)
Alabi, A.B., Akinsola, I. S., Olatunji, S., Ogunyinka, C and Osanyinlusi, O. Structural, Mineralogical, and Quantitative Characterizations of Compositions of Products Linked to Explosive Volcanic Eruption at Haleakala, USA. Tanzania Journal of Science, 2020, 46(2): 205-215. https://www.ajol.info/index.php/tjs/article/view/196276
Dobrin, M.B and Savit, C.H. Introduction to geophysical prospecting. 4th edition. McGraw-Hill, New York. pp., 1985, 752, 755
Eldosouky, A.M., Abdelkareem, M and Elkhateeb, S.O. Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt, Journal of African Earth Sciences., 2017,
doi: 10.1016/j.jafrearsci.2017.03.006
Olasunkanmi N.K., Olufemi S.B and Aina, A. Exploration for iron ore in agbado-okudu, Kogi state, Nigeria. Arab. J. Geosci., 2017. 10(541)
Abercrombie, S.P and Friedl, M.A. Improving the consistency of multi-temporal land cover maps using a hidden Markov model IEEE. Trans. Geosci. Remote Sens., 2016, 54: 703-713.
Oyawoye, M.O. Geology of Nigerian Basement Complex. Journal of Mining and Geology., 1964.
Haruna I.V. Review of the Basement Geology and Mineral Belts of Nigeria. Journal of Applied Geology and Geophysics., 2017, 5: 37-45
Oluyide, P.O., Nwajide, C.S and Oni, A.O. The geology of Ilorin with exploration on the 1:250,000 series, sheet 50 (Ilorin). Geological Survey of Nigeria bulletin., 1998, 42: 1-84.
Bolarinwa A.T, Ibrahim, S. Evaluation of groundwater occurrences in the Precambrian basement complex of Ilorin metropolis, southwestern Nigeria. RMZ – Materials & Geoenvironment., 2015, 62:17- 132
Tijani, M., Crane, E., Upton, K., Ó Dochartaigh, B.É. and Bellwood-Howard, I. Africa Groundwater Atlas: Hydrogeology of Nigeria. British Geological Survey., 2018. http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Nigeria
Yamusa, I.B., Yamusa, Y.B., Danbatta U.A and Najime, T. Geological and structural analysis using remote sensing for lineament and lithological mapping. In: IOP Conference Series: Earth and Environmental Science, 169, 2018, pp 1-9, DOI: 10.1088/1755-1315/169/1/012082
NGSA-Nigeria Geological Survey Agency. Geological and Mineral Resources Map of Kwara State, Nigeria, 2006
Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., Gardner, J. A., Adler-Golden, S. M., Matthew, M. W., Berk, A., Bernstein, L. S., Acharya, P. K., Miller, D and Lewis, P. FLAASH, a MODTRAN4based atmospheric correction algorithm, its applications, and validation. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1414–1418. EEE.. https://doi.org/10.1109/IGARSS.2002.1026134
Ijeh, B. I., Ohaegbuchu, H. E and Okpetue, P. C. Integration of Aeromagnetic Data and Landsat Imagery for Structural Analysis: A Case Study of Awgu in Enugu State, South-Eastern, Nigeria. WNOFNS, 2018, 18(2): 79-105. EISSN. 2543-5426
Miller, D, and Lewis, P. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application, and validation. In: Proceedings of the Geoscience and Remote Sensing Symposium. IEEE International, 2002, 3:1414–1418
USGS-United States Geological Survey. Product guide: Provisional Landsat 8 surface reflectance product, version 1.4 www.usgs.gov/landsat., 2015.
Clark, R.N and Swayze, G.A.S. Automated spectral analysis: mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials. In: The USGS Tricorder Algorithm, Lunar, and Planetary Science XXVI., 1995 pp. 255-256. The USA
Clark. R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy: Operation manual of remote sensing., 1999. 3, 3-58
Ducart, D.F., Silva, A. M., Toledo, C. L. B and Mozer de Assis, L. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology., 2016, 46 (3): 331–349. https://doi.org/10.1590/2317-4889201620160023
Pour, A.B., Park, T.S., Park, Y., Hong, J.K., Zoheir, B., Pradhan, B., Ayoobi, I, and Hashim, M. Application of multi-sensor satellite data for exploration of Zn–Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sensing,, 2018, 10: 1186. https://www.mdpi.com/2072- 4292/10/8/1186
Rezaei, A., Hassani, H., Moarefvand, P and Golmohammadi, A. Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods. Geology, Ecology, and Landscapes, 2020. 4(1): 59-70. DOI:10.1080/24749508.2019.1585657
Murphy, B.S.R. Airborne geophysics and the Indian scenario. J. Ind. Geophysics Union, 2007, 11(1): 1–28. https://www.google.com/search?sxsrf=ALeKk02QkluUuZtCdsmVeoZKTzg266PLGA:1605886257818&source=univ&tbm=isch&q=geological+and+mineral+resources+map+of+kwara+state&sa=X&ved=2ahUKEwidpMm_uJHtAhVNSEEAHZbsA80QjJkEegQICxAB&biw=1600&b ih=789
Olatunji, S and Osazuwa I. B. Geo-electrical delineations within Kubanni basin, north-central Nigeria. Arab J Geosci, 2012 6 (10): 4079-4089. DOI 10.1007/s12517-012-0702-7
Burke, K. C., Dewey J. F.: Orogeny in Africa. In: Dessauvagie TFJ, Whiteman AJ (eds), Africa geology, pp. 583–608. University of Ibadan Press, Ibadan (1972)
Dada, S.S. Proterozoic evolution of Nigeria. In: The basement complex of Nigeria and its mineral resources, pp. 29–44 (Oshi, O., ed.). Akin Jinad & Co., Ibadan, 2006
Olasunkanmi, N.K., Bamigboye, Olatunji, S., Salawu,N and Bamidele T. Interpretation of high-resolution aeromagnetic data of Kaoje and its environment, the western part of the Zuru Schist belt, Nigeria: implication for Fe–Mn occurrence. Heliyon. 6(1): e03320. DOI: 10.1016/j.heliyon.2020.e03320
Ali, A and Pour, A. Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in Ariab mining district, Red Sea Hills, Sudan. International Journal of Basic and Applied Sciences., 2014 3: 199–208
Amusuk, D.J., Hashim, M., Pour, A.B and Musa, S.I. Utilization of Landsat 8 Data for Lithological Mapping of Basement Rocks of Plateau state North Central Nigeria. The International Archives of the Photogrammetry, Remote sensing and spatial information sciences, 2016.Vol. XLII-4/W1
Kolawole M.S, Ishaku J.M., Daniel A and Owonipa, O. D. Lineament Mapping and Groundwater Occurrence within the Vicinity of Osara Dam, Itakpe-Okene area, North Central Nigeria, Using Landsat Data. Journal of Geosciences and Geomatics, 4(3): 42-52. DOI: 10.12691/jgg-4-3-1
Lane J.W. Jr., Haeni F.P and Waston W.M. Use of a Square-Array Direct-Current Resistivity Method to detect fractures in Crystalline Bedrock in New Hamshire. Ground Water, 1995, 33(3): 476-485.
Olasehinde P.I and Bayewu O.O. Evaluation of electrical resistivity anisotropy in geological mapping: A case study of Odo Ara, West Central Nigeria. African Journal of Environmental Science and Technology. 2011, 5(7): 553-556.
Ayoobi, I and Tangestani, M.H. Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain. Int. J. Appl. Earth Obs. Geoinf., 2017. 62: 1–7