ANTIMICROBIAL PROPERTIES OF CARBON NANOTUBE: A SUCCINCT ASSESSMENT
DOI:
https://doi.org/10.4314/jfas.1323Keywords:
Carbon nanotubes, antibacterial, toxicityAbstract
Carbon nanotubes (CNTs) particularly single walled carbon nanotubes (SWNT) have been used in pharmacy and medicine for drug delivery systems in therapeutics since the beginning of the twenty-first century. Because carbon nanotubes have demonstrated the ability to transport a wide range of chemicals across membranes and into living cells, they have piqued interest in medicinal applications such as improved imaging, antimicrobial agents, tissue regeneration, and medication or gene delivery. Despite the abundance of evidence demonstrating the benefits of CNTs in terms of higher efficacy and fewer side effects, numerous recent studies have revealed unanticipated toxicities caused by CNTs. CNTs have recently gained a lot of attention for their antibacterial properties. The antimicrobial properties of carbon nanotubes, as well as their toxicity, are summarized and discussed in this mini review.
Downloads
References
Omorogbe, S. O., Aigbodion, A.I., Ifijen, H.I., Ogbeide-Ihama, N., Simo, A., Ikhuoria, E. U. (2020). Low temperature synthesis of super paramagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifier. In book: TMS, 149th Annual Meeting & Exhib. Supplem. Proceedin. 619-631.
Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nig. J. Mater. Sci. Eng. 7(2): 23-31.
Ifijen I.H., Ikhuoria E.U., Maliki M., Otabor G.O., Aigbodion A.I. (2022) Nanostructured materials: a review on its application in water treatment. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 1172-1180.
Ifijen I.H., Aghedo O.N., Odiachi I.J., Omorogbe S.O., Olu E.L., Onuguh I.C. (2022) Nanostructured Graphene Thin Films: A brief review of their fabrication techniques and corrosion protective performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 366-377.
Ifijen I.H., Maliki M., Omorogbe S.O., Ibrahim S.D. (2022) Incorporation of metallic nanoparticles into alkyd resin: a review of their coating performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 338-349.
Omorogbe, S.O., Ikhuoria, S.O., Ifijen, I.H., Simo, A., Aigbodion, A.I., Maaza, M. (2019). Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. The Minerals, Metals & Mater Soc (ed.), TMS 2019 148th Annual Meeting & Exhib. Supplem. Proceedin. 155–164.
Ifijen, I.H., Ikhuoria, E.U. (2019). Generation of highly ordered 3d vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzania J. Sci. 45(3): 439449.
Ifijen, I.H., Ikhuoria, E.U. (2020). Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzania J. Sci. 46(1): 19-30.
Ifijen, I.H., Ikhuoria, E.U. Omorogbe, S.O. (2018). Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J. dispersion sci. tech. 40(7):1-8.
Ifijen, I.H., Ikhuoria, E.U. Omorogbe, S.O. Aigbodion A.I. (2019a) Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes. In: Srivatsan T., Gupta M. (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Mater. Series. Springer, Cham. 155-164.
Ifijen, I.H., Maliki, M., Ovonramwen, O.B., Aigbodion, A.I., Ikhuoria, E.U. (2019b) Brilliant coloured monochromatic photonic crystals films generation from poly (styrene-butyl acrylate-acrylic acid) latex. J. Applied of Sci. Environ. Mgt. 23 (9): 1661-1664.
Ifijen, I.H., Omorogbe, S.O., Maliki, M., Odiachi, I.J., Aigbodion, A.I., Ikhuoria, E.U. (2020a). Stabilizing Capability of Gum Arabic on the Synthesis of Poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzania J. Sci. 46(2): 345-35.
Omorogbe S. O., Ikhuoria E.U., Igiehon L. I., Agbonlahor G.O., Ifijen I. H., Aigbodion A.I. (2017). Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nigerian J. Mater. Sci. Technol. 7:21-30
Ifijen, I.H., Maliki, M., Odiachi, I.J., Aghedo, O.N., Ohiocheoya, E.B. (2022). Review on solvents-based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem. Afri. 5: 211–225.
Ifijen, I.H., Ikhuoria, E.U., Aigbodion, A.I., Omorogbe, S.O. (2018). Impact of varying the concentration of tetraethyl-orthosilicate on the average particle diameter of monodisperse colloidal silica spheres. Chem. Sci. J. 9(1): 183-185.
Ikhuoria E.U., Ifijen I.H., Georgina O.P., Ehigie A.C., Omorogbe S.O., Aigbodion A.I. (2020). The adsorption of heavy metals from aqueous solutions using silica microparticles synthesized from sodium silicate. Ni-Co 2021: The 5th Int’l. Symposium on Ni and Co. 195-205.
Ifijen I.H., Itua A.B., Maliki M., Ize-Iyamu C.O., Omorogbe S.O., Aigbodion A.I., Ikhuoria E.U. (2020). The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 6(9): e04907.
Ifijen, I.H., Maliki, M. (2022). A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Inorg. Nano-Metal Chem.
Eribe, M. J., Ikhazuagbe, H. I., Kate E. M., Okeke I. E., Inono C. O. (2022). Review on the Heightened Mechanical Features of Nanosilica-Based Concrete and the Response of Human Fibroblasts to Nanosilica. Biomed. Mater. Devices.
Salari, S., Jafari, S.M. (2020). Application of nanofluids for thermal processing of food products. Trends. Food Sci. Technol. 97: 100–13.
Su, Q., Gan, L., Liu, J., Yang, X. (2020). Carbon dots derived from pea for specifically binding with Cryptococcus neoformans. Anal. Biochem. 589:113476.
Abd-Elsalam, K.A. (2020). Carbon nanomaterials: 30 years of research in agroecosystems, Carbon nanomaterials for agri-food and environmental applications. Elsevier 1–18.
Azizi-Lalabadi, M., Hashemi, H., Feng, J., Jafari, S.M. (2020). Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv. in Colloid and Interface Sci. 284: 102250.
Dizaj, S.M., Mennati, A., Jafari, S., Khezri, K., Adibkia, K. (2015). Antimicrobial activity of carbonbased nanoparticles. Adv. Pharm. Bull. 5:19.
Ji, H., Sun, H., Qu, X. (2016). Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv. Drug Deliv. Rev. 105: 176–89.
Chong, Y., Ge, C., Fang, G., Wu, R., Zhang, H., Chai, Z., Chen, C., Yin, J-J. (2017). Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol. 51: 10154–61.
Khan, A.A.P., Khan, A., Rahman, M.M., Asiri, A.M., Oves, M. (2016). Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly (O-toluidine) nanocomposite. Int. J. Biol. Macromol. 89: 198–205.
Maksimova, Y.G. (2019). Microorganisms and carbon nanotubes: interaction and applications. Appl. Biochem. Microbiol. 55: 1–12.
Mohammed, M.K., Ahmed, D.S., Mohammad, M.R. (2019). Studying antimicrobial activity of carbon nanotubes decorated with metal-doped ZnO hybrid materials. Mater. Res. Express 6: 055404.
Hussan, N.Q.A., Taha, A.A., Ahmed, D.S. (2021). Characterization of treated multi-walled carbon nanotubes and antibacterial properties. J. Applied Sci. Nanotechnol.1(2): 1-9.
Dong, L., Henderson, A., Field, C. (2012). Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J. Nanotechnol. 2012: 928924.
Aslan, S., Maatta, M., Haznedaroglu, B.Z., Goodman, J.P.M., Pfefferle, L.D., Elimelech, M., Pauthe, E., Sammalkorpi, M., Tassela, P.R.V. (2013). Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. Soft Matter. 9: 2136.
Abo-Neima, S.E., Motaweh, H.E., Elsehly, E.M. (2020). Antimicrobial activity of functionalised carbonnanotubes against pathogenicmicroorganisms. IET Nanobiotechnol. 14(6): 457-464.
Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M. (2008). Antibacterial Effects of Carbon Nanotubes: Size Does Matter? Langmuir 24: 6409-6413.
Yang, C., Mamouni, J., Tang, Y., Yang, L. (2010). Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20): 16013–16019.
Sloan, A.W., Santana-Pereira, A.L., Goswami, J., Liles, M.R., Davis, V.A. (2017). Single-walled carbon nanotube dispersion in tryptic soy broth. ACS Macro Lett. 6: 1228–1231.
Noor, M.M., Santana-Pereira, A.L.R., Liles, M.R., Davis, V.A. (2022). Dispersant effects on single-walled carbon nanotube antibacterial activity. Molecules 27: 1606.
jannati H., Sheikhpour M., Siadat S.D., Safarian P. (2021). Antimicrobial activity and drug delivery ability of Functionalized Multi-Walled Carbon Nanotubes Nanofluid on staphylococcus aureus. Nanomed. Res. J. 6(3): 248-256.
Hassani, M., Tahghighi, A., Rohani, M., Hekmati, M., Ahmadian, M., Ahmadvand, H. (2022). Robust antibacterial activityof functionalized carbon nanotube levofloxacine conjugate based on in vitro and in vivo studies. Scientific Rep.12: 10064.
Yan, L., Zhao, F., Li, S., Hu, Z., Zhao, Y. (2011). Low-toxic and safe nanomaterials by surface- chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3: 362–82.
Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J.P., Cooke, P.A., Gray, J.W., Chen, F.F. (2005). Molecular char- acterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano- onions on human skin fibroblast. Nano Lett. 5: 2448–64.
Hussain, M., Kabir, M., Sood, A. (2009). On the cytotoxicity of carbon nanotubes. Curr. Sci. 96: 00113891.
Zhao, X., Liu, R. (2012). Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40: 244–55.
Vankoningsloo, S., Piret, J-P., Saout, C., Noel, F., Mejia, J., Zouboulis, C.C., Delhalle, J., Lucas, S., Toussaint, O. (2010). Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicol. 4: 84–97.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Fundamental and Applied Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.