CHEMICAL, THERMAL AND BIO-RESPONSIVE POLYSTYRENE BASED-PHOTONIC CRYSTALS: A MINI-REVIEW

Authors

  • Ikhazuagbe Hilary Ifijen Rubber Research Institute of Nigeria
  • Selina Ilunakan Omonmhenle

DOI:

https://doi.org/10.4314/jfas.1324

Keywords:

Photonic crystals, polystyrene, sensor

Abstract

The potential uses for photonic crystals have attracted a lot of research interest. They can be employed as sensors thanks to their clearly defined physical properties, such as reflectance/transmittance, higher degrees of sensitivity producing precise detection limits, and the sparkling visual quality they present in the visible range of wavelengths. Connecting incident, reflected, and transmitted light to optical fibers allows for the sensing applications, which are then analyzed in distant locations. Responsive PhCs can be fabricated to sense chemicals, thermal and biological stimuli based on these characteristics. Evaluation of the product's cost-effectiveness and measurement accuracy in comparison to alternative approaches are essential for any sensing technology to be long-term viable. The minimal water absorption, rigidity, and low manufacturing costs of polystyrene make it a highly desirable material. This article examined some significant recent research on polystyrene-based photonic crystals that are thermo-, chemically-, and biologically sensitive.

Downloads

Download data is not yet available.

References

Fan, J., Qiu, L., Qiao, Y., Xue, M., Dong, X., Meng, Z. (2021) Recent Advances in Sensing Applications of Molecularly Imprinted Photonic Crystals. Front. Chem. 9: 665119.

Tian, P., Zhan, P., Tian, H. L., Wang, P., Lu, C., Zhao, Y., Ni, R., Zhang, R. (2021). Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC–MS, OAV, and multivariate analysis. Food Chem. 345:128748.

Shahraki, H., Tabrizchi, M., and Farrokhpor, H. (2018). Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization. J. Hazard. Mater. 357, 1–9.

Benny, L., John, A., Varghese, A., Hegde, G., and George, L. (2021). Waste elimination to porous carbonaceous materials for the application of electrochemical sensors: recent developments. J. Clean. Prod. 290: 125759.

Carneiro, L. P. T., Ferreira, N. S., Tavares, A. P. M., Pinto, A., Mendes, A., and Sales, M. G. F. (2021). A passive direct methanol fuel cell as transducer of an electrochemical sensor, applied to the detection of carcinoembryonic antigen. Biosens. Bioelectron. 175: 112877.

Omorogbe, S. O., Aigbodion, A.I., Ifijen, H.I., Ogbeide-Ihama, N., Simo, A., Ikhuoria, E. U. (2020). Low temperature synthesis of super paramagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifier. In book: TMS, 149th Annual Meeting & Exhib. Supplem. Proceedin. 619-631.

Ikhuoria, E.U., Omorogbe, S.O., Sone, B.T., Maaza, M. (2018). Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Sci. Technol. Mater. 30(2): 92-98.

Ifijen I.H., Ikhuoria E.U., Maliki M., Otabor G.O., Aigbodion A.I. (2022) Nanostructured materials: a review on its application in water treatment. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 1172-1180.

Ifijen I.H., Aghedo O.N., Odiachi I.J., Omorogbe S.O., Olu E.L., Onuguh I.C. (2022) Nanostructured Graphene Thin Films: A brief review of their fabrication techniques and corrosion protective performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 366-377.

Ifijen I.H., Maliki M., Omorogbe S.O., Ibrahim S.D. (2022) Incorporation of metallic nanoparticles into alkyd resin: a review of their coating performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 338-349.

Omorogbe, S.O., Ikhuoria, S.O., Ifijen, I.H., Simo, A., Aigbodion, A.I., Maaza, M. (2019). Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. The Minerals, Metals & Mater Soc (ed.), TMS 2019 148th Annual Meeting & Exhib. Supplem. Proceedin. 155–164.

Ifijen, I.H., Ikhuoria, E.U. (2019). Generation of highly ordered 3d vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzania J. Sci. 45(3): 439449.

Ifijen, I.H., Ikhuoria, E.U. (2020). Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzania J. Sci. 46(1): 19-30.

Ifijen, I.H., Ikhuoria, E.U. Omorogbe, S.O. (2018). Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J. dispersion sci. tech. 40(7):1-8.

Ifijen, I.H., Ikhuoria, E.U. Omorogbe, S.O. Aigbodion A.I. (2019a) Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes. In: Srivatsan T., Gupta M. (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Mater. Series. Springer, Cham. 155-164.

Ifijen, I.H., Maliki, M., Ovonramwen, O.B., Aigbodion, A.I., Ikhuoria, E.U. (2019b) Brilliant coloured monochromatic photonic crystals films generation from poly (styrene-butyl acrylate-acrylic acid) latex. J. Applied of Sci. Environ. Mgt. 23 (9): 1661-1664.

Ifijen, I.H., Omorogbe, S.O., Maliki, M., Odiachi, I.J., Aigbodion, A.I., Ikhuoria, E.U. (2020a). Stabilizing Capability of Gum Arabic on the Synthesis of Poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzania J. Sci. 46(2): 345-35.

Omorogbe S. O., Ikhuoria E.U., Igiehon L. I., Agbonlahor G.O., Ifijen I. H., Aigbodion A.I. (2017). Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nigerian J. Mater. Sci. Technol. 7:21-30

Ifijen, I.H., Maliki, M., Odiachi, I.J., Aghedo, O.N., Ohiocheoya, E.B. (2022). Review on solvents-based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem. Afri. 5: 211–225.

Ifijen, I.H., Ikhuoria, E.U., Aigbodion, A.I., Omorogbe, S.O. (2018). Impact of varying the concentration of tetraethyl-orthosilicate on the average particle diameter of monodisperse colloidal silica spheres. Chem. Sci. J. 9(1): 183-185.

Ikhuoria E.U., Ifijen I.H., Georgina O.P., Ehigie A.C., Omorogbe S.O., Aigbodion A.I. (2020). The adsorption of heavy metals from aqueous solutions using silica microparticles synthesized from sodium silicate. Ni-Co 2021: The 5th Int’l. Symposium on Ni and Co. 195-205.

Ifijen I.H., Itua A.B., Maliki M., Ize-Iyamu C.O., Omorogbe S.O., Aigbodion A.I., Ikhuoria E.U. (2020). The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 6(9): e04907.

Ifijen, I.H., Maliki, M. (2022). A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Inorg. Nano-Metal Chem. DOI: 10.1080/24701556.2022.2068596.

Jonathan, E.M., Ifijen, I.H., Mokobia, K.E., Okeke, E.I., Omoruyi, C.I., Anegbe, B. (2022). A Review on the Heightened Mechanical Features of Nanosilica-Based Concrete and the Response of Human Fibroblasts to Nanosilica. Biomed. Mater. Devices. https://doi.org/10.1007/s44174-022-00013-4.

Ikhuoria, E.U., Omorogbe, S.O., Sone, B.T., Nuru, Z.Y., Khamlich, S., Maaza, M. (2018) Raspberry-like and other hexagonal close-packed morphologies of P(St-MMA-AA) particles obtained from different emulsifiers for photonic applications., J. Modern Opt. 65(15): 1817-1826.

Snapp, P., Kang, P., Leem, J., and Nam, S. (2019). Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Functional Mater. 29:1902216.

Passaro, Vittorio (2013). Advances in Photonic Crystals || Photonic Crystals for Optical Sensing: A Review. (Chapter 11): 241-245. doi:10.5772/53897.

Zlatanovic, S.; Mirkarimi, L.W.; Sigalas, M.M.; Bynum, M.A.; Chow, E.; Robotti, K. M.; Burr, G.W.; Esener, S. & Grot, A. (2009). Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein detection, Sensors and Actuators B: Chemical, (August 2009), 141(1), 13-19.

Popa, D., Udrea, F. (2019). Towards Integrated Mid-Infrared Gas Sensors. Sensors (Basel). 19(9): 2076.

Zou, Y., Chakravarty, S., Lai, W.-C., Lin, C.-Y., Chen, R.T. (2012). Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform. Lab. Chip. 12(13): 2309-2312.

Burratti, L., Casalboni, M., De Matteis, F., Pizzoferrato, R., Prosposito, P. (2018). Polystyrene Opals Responsive to Methanol Vapors. Materials (Basel). 11(9): 1547.

Moscardi, L., Lanzani, M., Paternò, G.P., Scotognella, F. (2021). Stimuli-Responsive Photonic Crystals. Appl. Sci. 11: 2119.

Nucara, L., Piazza, V., Greco, F., Robbiano, V., Cappello, V., Gemmi, M., Cacialli, F., Mattoli, V. (2017). Ionic strength responsive sulfonated polystyrene opals. ACS Appl. Mater. Interfaces 9: 4818–4827.

Jia, X., Wang, K., Wang, J., Hu, Y.; Shen, L., Zhu, J. (2016). Full-color photonic hydrogels for pH and ionic strength sensing. Eur. Polym. J. 83: 60–66.

Burratti, L., Casalboni, M., De Matteis, F., Pizzoferrato, R., Prosposito, P. (2018). Polystyrene opals responsive to methanol vapors. Mater. 11(9): 1547.

Burratti, L., De Matteis, F., Casalboni, M., Francini, R., Pizzoferrato, R., Prosposito, P. (2018). Polystyrene photonic crystals as optical sensors for volatile organic compounds. Mater. Chem. Phys. 212: 274-281.

Fenzl, C., Hirsch, T., Wolfbeis, O.S. (2012). Photonic crystal-based sensor for organic solvents and for solvent-water mixtures. Sensors 12(12): 16954-63.

Yan, D., Lu, W., Qiu, L., Meng, Z., Qiao, Y. (2019). Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels. RSC Adv. 9: 21202–21205.

Honda, M.; Seki, T.; Takeoka, Y. Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 21: 1801–1804,

Zheng, H., Li, J., Song, W. et al. (2021). Thermal-responsive Photonic Crystals based on Physically Cross-linked Inverse Opal Nanocomposite Hydrogels. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36: 289–296.

El-Amassi, D.M., Taya, S.A. & Vigneswaran, D. (2018). Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers. J Theor Appl Phys 12: 293–298.

Banerjee, A. (2009). Enhanced temperature sensing by using onedimensional ternary photonic band gap structures. Prog. Electromagn. Res. Lett. 11: 129–137.

Paternò, G.M., Manfredi, G., Scotognella, F., Lanzani, G. (2020). Distributed Bragg reflectors for the colorimetric detection of bacterial contaminants and pollutants for food quality control. APL Photonics 5: 080901.

Zhu, K., Chi, J., Zhang, D., Ma, B., Dong, X., Yang, J., Zhao, C.; Liu, H. (2019). Bio-inspired photonic crystals for naked eye quantification of nucleic acids. Analyst 144: 5413–5419.

Cai, Z., Sasmal, A., Liu, X., Asher, S.A. (2017). Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sensors 2: 1474–1481.

Jia, X., Xiao, T., Hou, Z., Xiao, L., Qi, Y., Hou, Z., Zhu, J. (2019). Chemically responsive photonic crystal hydrogels for selective and visual sensing of thiol-containing biomolecules. ACS Omega 4: 12043 - 12048.

Wang, X.Y., Zhu, K.D., Zhu, J., Ding, S.N. (2021). Photonic crystal of polystyrene nanomembrane: signal amplification and low triggered potential electrochemiluminescence for tetracycline detection. Anal. Chem. 93(5): 2959-2967.

Downloads

Published

2025-01-01

How to Cite

IFIJEN, I. H.; OMONMHENLE, S. I. . CHEMICAL, THERMAL AND BIO-RESPONSIVE POLYSTYRENE BASED-PHOTONIC CRYSTALS: A MINI-REVIEW. Journal of Fundamental and Applied Sciences, [S. l.], v. 17, n. 1, p. 107–123, 2025. DOI: 10.4314/jfas.1324. Disponível em: https://jfas.info/index.php/JFAS/article/view/1324. Acesso em: 23 jan. 2025.

Issue

Section

Articles

Most read articles by the same author(s)