COMPUTATION CHEZY’S COEFFICIENT IN A SEMI-ELLIPTICAL PIPE

Authors

  • Y. Beboukha Département d’Hydraulique, Université de Chlef, 02000 Chlef, Algérie
  • M. Lakehal Département d’Hydraulique, Université de Annaba, 23000 Annaba, Algérie
  • M. Remaoun Département d’Hydraulique, Université de Chlef, 02000 Chlef, Algérie
  • A. Ghomri Département d’Hydraulique et de Génie Civil, Université d’El-Oued, 39000, El-Oued, Algérie
  • B. Achour Université Mohamed Khider, Biskra. Laboratoire de Recherche en Hydraulique Souterraine et de Surface, LARHYSS

DOI:

https://doi.org/10.4314/jfas.v11i2.32

Keywords:

(Semi-Elliptical Pipe, Chezy’s Coefficient, Uniform flow, Rough Model Method.)

Abstract

In the hydraulic field, the Chezy’s flow resistance coefficient in canals and pipes is often chosen arbitrarily. This value is tabulated independently of the depth of the flow or hydraulic radius and even less of the Reynolds number. This coefficient is usually influenced by a number of parameters that must be defined and considered. The objective of this study is to examine, on the one hand, the variation of the Chezy’s flow resistance coefficient for a semi-elliptical pipe under the hypothesis of an uniform flow with free surface, and to determine on the other hand, the expressions which govern them. Further, it must search expression for Chezy’s with consideration of the geometric characteristics of the pipe and hydraulic flow. This study is based on the rough model method (RMM).

Downloads

Download data is not yet available.

References

[1] Mark W S, Nicholas J C and Louise J B. Progress in Physical Geography 31(4), 2007, 363–387, doi: 10.1177/0309133307081289
[2] Herschel S. On the origin of the Chézy formula. Journal of the Association of Engineering Societies, 1897, 18,363–69.
[3] Lawrence D S L. Hydraulic resistance in overland flow during partial and marginal surface inundation: experimental observations and modeling. Water Resources Research, 2000, 36, 2381–2393.
[4] Achour B. Canal rectangulaire en charge et à surface libre. Editions Al-Djazair, 2014, p40.
[5] Henderson F M. Open channel flow. New York: Macmillan, 1966
[6] Hey R D. Flow Resistance in Gravel-Bed Rivers. Journal of the Hydraulics Division. American Society of Civil Engineers, 1979,105, 365-79.
[7] Swamee P K, Rathie P N. Journal of Hydraulic Research, 2004, Vol.42, No. 5, 543-549, doi: 10.1080/00221686.2004.9641223
[8] Swamee P K, Swamee N.Journal of Hydraulic Research,2008,46 (2), 277-281,doi:10.1080/00221686.2008.9521861
[9] Achour B. Calculdes conduites et canaux par la MMR – Conduites et canaux en charge, Larhyss Edition Capitale, 2007, Tome 1, pp62-66.
[10] Achour B, Bedjaoui A. Journal of Hydraulic Research, 2006, 44 (5),715-717,doi: 10.1080/00221686.2006.9521721
[11] Colebrook, C F. Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. Proceedings of the Institution of Civil Engineers,1939, 12, 393-422.
[12] Achour B, Bedjaoui A. Turbulent pipe-flow computation using the rough model method (RMM). J. Civil Eng. Sci., 2012,1 (1), 36-41.
[13] Achour B. The Open Civil Engineering Journal, 2015, 9, 187-195,doi: 10.2174/1874149501509010187

Downloads

Published

2019-03-14

How to Cite

BEBOUKHA, Y.; LAKEHAL, M.; REMAOUN, M.; GHOMRI, A.; ACHOUR, B. COMPUTATION CHEZY’S COEFFICIENT IN A SEMI-ELLIPTICAL PIPE. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 2, p. 1045–1060, 2019. DOI: 10.4314/jfas.v11i2.32. Disponível em: https://jfas.info/index.php/JFAS/article/view/191. Acesso em: 30 jan. 2025.

Issue

Section

Articles

Most read articles by the same author(s)