EFFECT OF THE CALCINATION TEMPERATURE ON THE OXYGEN EVOLUTION REACTION OVER Pr6O11 OXIDE

Authors

  • E. Omari Laboratory of Molecular Chemistry and Environment, University of Biskra B.P 145 07000 Algeria
  • Z. Ben Adel Laboratory of Molecular Chemistry and Environment, University of Biskra B.P 145 07000 Algeria
  • M. Omari Laboratory of Molecular Chemistry and Environment, University of Biskra B.P 145 07000 Algeria

DOI:

https://doi.org/10.4314/jfas.v11i3.8

Keywords:

Oxide

Abstract

The Pr6O11 oxide synthesized using the citrate sol-gel method was calcined at four temperatures 600, 700, 800 and 900 °C. The prepared powder was characterized by DTA-TGA, XRD, IR and SEM. The thermal analysis shows an endothermic peak at 765°C attributed the pure cubic phase.  XRD diffraction pattern reveal that three phases Pr2CO5, Pr4O7 and Pr6O11 coexist at 600°C. At T ≥ 700°C, secondary phases Pr2CO5, Pr4O7 disappear while the phase Pr6O11 becomes alone indicating the formation of the pure cubic phase. IR spectra show two bandes at ~ 580 and 660 cm-1 assigned to Pr-O bonds confirming the formation of the Pr6O11 cubic structure. The microstructural analysis shows that powders are constituted from particles having different shape, size and are agglomerated.  The electrocatalytic properties of samples were investigated using cyclic voltammetry, Tafel slopes, electrochemical impedance spectroscopy. The activity for the oxygen evolution reaction decreases with increasing the calcination temperature. The obtained Tafel slopes are 59, 71 and 85 mV.dec-1 for the Pr6O11 oxide calcined at 700, 800 and 900°C respectively.        

Downloads

Download data is not yet available.

References

[1] Dong S., Xu K.,Tian G. , J. Mater. Sci. 44, 2009, 2548–2552.
[2] Bernal S., Botana F.J., Cifredo G., Calvino J.J., Jobacho A. and Izquierdo J.M.R., J. Alloys Compd., 180,1992, 271–279.
[3] Ferro S., Int. J. Electrochem., 2011, 2011, 1–7.
[4] Borchert Y., Sonstrom P., Wilhelm M., Borchert H., and Baumer M., J. Phys. Chem. C 112, 2008, 3054-3063.
[5] Balachandran S., Thirumalai K., Swaminathan M., RSC Adv., 4, 2014, 27642-
[6] Zinatloo-Ajabshir S., Salavati-Niasari M., New J. Chem., 39, 2015, 3948-
[7] Hall D.E., J. Electrochem.Soc., 132(2), 1985, 41C.
[8] Marcos Z, David L., Chem Mater 12(9), 2000, 2763–2769.
[9] Gaber A. , Abdel- Rahim M.A., Abdel-Latief A.Y., Abdel-Salam M.N., Int. J. Electrochem. Sci., 9, 2014, 81 – 95.
[10] Dos Santos M.L., Lima R.C., Riccardi C.S., Tranquilin R.L., Bueno P.R., Varela J.A., Longo E., Mater. Lett., 62, 2008, 4509–4511.
[11] El-Shafey E.S.I., J. Med. Bioeng., 3, 2014, 292–296
[12] Jung G.B., Huang T.J., Huang M.H., Chang C.L., J. Mater. Sci., 36, 2001, 5839-5844.
[13] Xu W., Haarberg G. M., Sunde S., Seland F., Ratvik A. P., Zimmerman E., Shimamune T., Gustavsson J.,and Akred T., J. Electrochem. Soc., 164 (9), 2017, F895-F900. [14] Ma H., Liu C., Liao J., Su Y., Xue X., Xing W., , J. Mol. Catal. A-Chem., 247, 2006, 7–13. [15] Rasten E., Hagen G., Tunold R., Electrochim. Acta, 48, 2003, 3945-3952.

Downloads

Published

2019-08-24

How to Cite

OMARI, E.; BEN ADEL, Z.; OMARI, M. EFFECT OF THE CALCINATION TEMPERATURE ON THE OXYGEN EVOLUTION REACTION OVER Pr6O11 OXIDE. Journal of Fundamental and Applied Sciences, [S. l.], v. 11, n. 3, p. 1164–1174, 2019. DOI: 10.4314/jfas.v11i3.8. Disponível em: https://jfas.info/index.php/JFAS/article/view/492. Acesso em: 30 jan. 2025.

Issue

Section

Articles