A SPATIO-TEMPORAL CARTOGRAPHY AND LANDSCAPE METRICS OF URBANIZATION PATTERNS IN ALGERIAN LOW-SAHARA. THE CASE OF OUARGLA CITY

Authors

  • A. Dechaicha Laboratory ‘LACOMOFA’, Department of Architecture, University Mohamed Khider – Biskra. PB 145 (07000), Algeria
  • Dj. Alkama Department of Architecture, University 8 May 1945 – Guelma. PB 401(24000), Algeria

DOI:

https://doi.org/10.4314/jfas.v12i3.16

Keywords:

urbanization, spatial growth, oasis ecosystem, satellite image, landscape metrics

Abstract

Monitoring and assessment of spatial and landscape transformations generated by uncontrolled urbanization is currently a key step in any oasis sustainability project. Through a landscape-metrics based approach using a multi-time series of Landsat images (1985-2000-2015), we have tried to assess the spatial growth of Ouargla City (Algeria) over the last three decades, by highlighting its impact on the oasis ecosystem. The results of the spatio-temporal cartography have shown a significant spatial growth of built-up areas, against an excessive decline and progressive fragmentation of the palm grove, which have negatively influenced the oasis ecosystem functioning. The main aim of this paper is to show the utility of satellite images and landscape metrics for monitoring uncontrolled urbanization and assessing its impacts on oasis landscapes.

Downloads

Download data is not yet available.

References

[1] UN (United Nations). The World’s Cities in 2018. Data Booklet. 2018, 29p. URL: https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
[2] Kouzmine Y, Fontaine J. Démographie et urbanisation au Sahara algérien à l’aube du XXIe siècle. Les Cahiers d’EMAM, 2018, (30). https://doi.org/10.4000/emam.1426.
[3] Kouzmine Y. Le Sahara algérien. Intégration nationale et développement régional. Paris: L’Harmattan, 2012, 344p.
[4] Hammache S. Retour sur une expérience de terrain : les nouveaux pôles urbains à Ouargla. Les mutations de la ville saharienne–Approches croisées sur le changement social et les pratiques urbaines, Conf. Procced. Univ. Ouargla, 2015.
[5] CNES (Conseil National Economique et Social). L’urbanisation et les risques naturels et industriels en Algérie : Inquiétudes actuelles et futures. Rapport. 2002, 112p. URL: http://www.cnes.dz/cnes/wp-content/uploads/Rapport-sur-l’urba.
[6] Weber C. Images satellitaires et milieu urbain. Paris : Hemès, 1995, 185p.
[7] Ban Y. Multitemporal Remote Sensing: Current Status, Trends and Challenges. In: Ban Y (Ed.). Multitemporal Remote Sensing Methods and Applications, Cham: Springer International Publishing, 2016, pp 1–18. https://doi.org/10.1007/978-3-319-47037-5_1.
[8] Kerle N, Janssen LLF, Huurneman GC. Principles of remote sensing. vol. 2. ITC, 2004, 250p.
[9] Aguejdad R, Hubert-Moy L. Suivi de l’artificialisation du territoire en milieu urbain par télédétection et à l’aide de métriques paysagères. Application à une agglomération de taille moyenne, Rennes Métropole. Cybergeo, 2016. https://doi.org/10.4000/cybergeo.27465.
[10] Wu J, He C, Huang G, Yu D. Urban Landscape Ecology: Past, Present, and Future. In: Fu B, Jones KB (Eds.). Landscape ecology for sustainable environment and culture, Dordrecht: Springer Netherlands, 2013, pp 37–53. https://doi.org/10.1007/978-94-007-6530-6_3.
[11] McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. UMass, 2012. URL: https://www.umass.edu/landeco/research/fragstats/fragstats.html
[12] Idder T, Idder A, Mensous M. Chapitre 15. Les conséquences écologiques d’une gestion non raisonnée des eaux agricoles dans les oasis du Sahara algérien. In: Aspe C (Ed.). De l’eau agricole à l’eau environnementale, Versailles: Editions Quæ, 2012, pp 209. https://doi.org/10.3917/quae.aspe.2012.01.0209.
[13] Chaba M. Une vieille cité devenue métropole: Ouargla (Note). Méditerranée, 2002, 99 (3), 103–106. https://doi.org/10.3406/medit.2002.3269.
[14] Ban Y, Yousif O. Change Detection Techniques: A Review. In: Ban Y (Ed.). Multitemporal Remote Sensing Methods and Applications, Cham: Springer International Publishing, 2016, pp 19–43. https://doi.org/10.1007/978-3-319-47037-5_2.
[15] Herold M, Couclelis H, Clarke KC. The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 2005, 29 (4), 369–399. https://doi.org/10.1016/J.COMPENVURBSYS.2003.12.001.
[16] Congedo L. Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1. 2016. https://doi.org/10.13140/RG.2.2.29474.02242/1.
[17] Tucker CJ, Grant DM, Dykstra JD. NASA’s global orthorectified Landsat data set. Photogrammetric Engineering & Remote Sensing, 2004, 70 (3), 313–322. https://doi.org/10.14358/PERS.70.3.313.
[18]NASA. Science Data Users Handbook. 2011, 186p. URL: http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Han
[19] FAO. Land Cover Classification System - Classification concepts. 2016, 40p. URL: http://www.fao.org/publications/card/en/c/93c7a130-2f
[20] Munafò M, Congedo L. Measuring and monitoring land cover. In: Gardi C (Ed.). Urban Expansion, Land Cover and Soil Ecosystem Services; Routledge: Abingdon, UK, London: Routledge, 2017, pp 19–32.
[21] Rajendran P, Mani K. Quantifying the Dynamics of Landscape Patterns in Thiruvananthapuram Corporation Using Open Source GIS Tools. International Journal of Research in Engineering and Applied Sciences, 2015, 5 (10), 77–87. URL: http://euroasiapub.org/wp-content/uploads/2016/09/10EASOct-2751-1.pdf.
[22] Mather P, Tso B. Classification methods for remotely sensed data. 2nd ed. Boca Raton: CRC press, 2016, 376p.
[23] Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 2007, 28 (5), 823–870. https://doi.org/10.1080/01431160600746456.
[24] Phiri D, Morgenroth J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing, 2017, 9 (9), 967. https://doi.org/10.3390/rs9090967.
[25] Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37 (1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B.
[26] Congalton RG, Green K. Assessing the accuracy of remotely sensed data: principles and practices. 2nd ed. Boca Raton: CRC press, 2008, 200p.
[27] Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics, 1977, 33 (1), 159–174. https://doi.org/10.2307/2529310.

Downloads

Published

2020-08-21

How to Cite

DECHAICHA, A.; ALKAMA, D. A SPATIO-TEMPORAL CARTOGRAPHY AND LANDSCAPE METRICS OF URBANIZATION PATTERNS IN ALGERIAN LOW-SAHARA. THE CASE OF OUARGLA CITY. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 3, p. 1235–1252, 2020. DOI: 10.4314/jfas.v12i3.16. Disponível em: https://jfas.info/index.php/JFAS/article/view/840. Acesso em: 30 jan. 2025.

Issue

Section

Articles