MICROCLIMATIC REGULATION OF PALM TREES IN SEMI-ARID ENVIRONMENT DURING HEAT STRESS

Authors

  • B. Sayad Civil Engineering and Hydraulics Laboratory, University 8 Mai 1945 Guelma. PB 401(24000), Algeria
  • D. Alkama Department of Architecture, University 8 May 1945 – Guelma. PB 401(24000), Algeria https://orcid.org/0000-0002-3565-6451

DOI:

https://doi.org/10.4314/jfas.v13i2.4

Keywords:

palm trees, microclimatic regulation, heat stress, PMV index, semi-arid environment

Abstract

Vegetation affects the urban microclimate in different ways, including shading, aspersing the humidity and controlling the wind velocity. In urban areas, microclimatic regulation depends on a number of features such as type and ratio of vegetation. This paper investigates the microclimatic regulation of palm trees in semi-arid environment during heat stress. El Nakhlette Street located in Guelma, Algeria has been selected to conduct the investigation, we measured air temperature, relative humidity and wind velocity during the hottest period of 2019.The study simulates four scenarios of El Nakhlette space in hot season with different ratio and type of vegetation using Envi-met model. The index PMV has been used to measure the heat stress levels. The findings show that palm trees as an evergreen type have the lesser microclimatic regulation and it is not the most suitable type to semi-arid environment.

Downloads

Download data is not yet available.

References

[1] M. Tesselaar, W. J. W. Botzen, and J. C. J. H. Aerts, “Impacts of climate change and remote natural catastrophes on EU flood insurance markets: An analysis of soft and hard reinsurance markets for flood coverage,” Atmosphere (Basel)., vol. 11, no. 2, 2020, doi: 10.3390/atmos11020146.
[2] H. B. L. Angeles, J. C. Cambridge, and M. C. Montreal, “The challenges for governance Coordinating Lead Author : Lead Authors :,” Cities Clim. Chang. - First Assess. Rep. Urban Clim. Chang. Res. Netw., pp. 249–269, 2011.
[3] J. Gaspari and K. Fabbri, “A Study on the Use of Outdoor Microclimate Map to Address Design Solutions for Urban Regeneration,” Energy Procedia, vol. 111, no. March, pp. 500–509, 2017, doi: 10.1016/j.egypro.2017.03.212.
[4] M. Eames, T. Dixon, T. May, and M. Hunt, “City futures: Exploring urban retrofit and sustainable transitions,” Build. Res. Inf., vol. 41, no. 5, pp. 504–516, 2013, doi: 10.1080/09613218.2013.805063.
[5] A. Djukic, M. Vukmirovic, and S. Stankovic, “Principles of climate sensitive urban design analysis in identification of suitable urban design proposals. Case study: Central zone of Leskovac competition,” Energy Build., vol. 115, pp. 23–35, 2016, doi: 10.1016/j.enbuild.2015.03.057.
[6] V. OLGYAY, A. OLGYAY, D. Lyndon, V. W. Olgyay, J. Reynolds, and K. Yeang, “Design with Climate,” Design with Climate. 2019, doi: 10.2307/j.ctvc77kqb.
[7] X. L. Zhao, D. Q. Zhao, Y. Zhou, and J. J. Lv, “The Microclimate Effect of Urban Park Fitness Trail in Spring - A Case Study of Harbin Zhao Lin Park,” Energy Procedia, vol. 134, pp. 266–275, 2017, doi: 10.1016/j.egypro.2017.09.616.
[8] M. Hebbert, “Climatology for city planning in historical perspective,” Urban Clim., vol. 10, no. P2, pp. 204–215, 2014, doi: 10.1016/j.uclim.2014.07.001.
[9] H. Jin, S. Liu, and J. Kang, “The Thermal Comfort of Urban Pedestrian Street in the Severe Cold Area of Northeast China,” Energy Procedia, vol. 134, pp. 741–748, 2017, doi: 10.1016/j.egypro.2017.09.571.
[10] B. Morille and M. Musy, “Comparison of the Impact of Three Climate Adaptation Strategies on Summer Thermal Comfort – Cases Study in Lyon, France,” Procedia Environ. Sci., vol. 38, pp. 619–626, 2017, doi: 10.1016/j.proenv.2017.03.141.
[11] H. Takebayashi, “Influence of urban green area on air temperature of surrounding built-up area,” Climate, vol. 5, no. 3, 2017, doi: 10.3390/cli5030060.
[12] Q. Huang, X. Meng, X. Yang, L. Jin, X. Liu, and W. Hu, “The Ecological City: Considering Outdoor Thermal Environment,” Energy Procedia, vol. 104, pp. 177–182, 2016, doi: 10.1016/j.egypro.2016.12.031.
[13] Y. Wang, F. Bakker, R. de Groot, H. Wortche, and R. Leemans, “Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling,” Urban Ecosyst., vol. 18, no. 4, pp. 1305–1331, 2015, doi: 10.1007/s11252-015-0447-7.
[14] R. Cocci Grifoni, M. Pierantozzi, S. Tascini, and G. Passerini, “Assessing the representativeness of thermal comfort in outdoor spaces,” WIT Trans. Ecol. Environ., vol. 155, no. May, pp. 835–846, 2011, doi: 10.2495/SC120702.
[15] B. Sayad and D. Alkama, “Adaptive Human Mechanisms of Outdoor Thermal Comfort in Cold Stress,” pp. 31–37, 2020, doi: 10.38027/n32020iccaua316345.
[16] S. Park, S. E. Tuller, and M. Jo, “Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments,” Landsc. Urban Plan., vol. 125, no. December, pp. 146–155, 2014, doi: 10.1016/j.landurbplan.2014.02.014.
[17] B. Sayad and D. Alkama, “Study of the microclimate behavior in spaces between buildings: Which strategy to adopt during cold season in Guelma’s public SPACES?,” AIP Conf. Proc., vol. 2123, no. July, 2019, doi: 10.1063/1.5117038.
[18] “testo 480 VAC analysis measuring instrument - TESTO - PDF Catalogs | Technical Documentation | Brochure.” https://pdf.directindustry.com/pdf/testo/testo-480-vac-analysis-measuring-instrument/5240-258883.html (accessed Aug. 28, 2020).
[19] K. L. L. Wimalarathne and N. G. R. Perera, “Mapping ‘Wind Comfort’ in Public Urban Spaces of Galle Fort, Sri Lanka,” no. April, 2019.
[20] A. Matzarakis and H. Mayer, “Atmospheric Conditions and Human Thermal Comfort in Urban Areas,” no. November, pp. 155–166, 2000.
[21] S. Zare, N. Hasheminejad, H. E. Shirvan, R. Hemmatjo, K. Sarebanzadeh, and S. Ahmadi, “Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year,” Weather Clim. Extrem., vol. 19, no. March, pp. 49–57, 2018, doi: 10.1016/j.wace.2018.01.004.
[22] H. Bencheikh and A. Rchid, “The effects of green spaces (palme trees) on the microclimate in arides zones, case study: Ghardaia , Algeria,” Energy Procedia, vol. 18, pp. 10–20, 2012, doi: 10.1016/j.egypro.2012.05.013.
[23] S. N. A. Buyadi, W. M. N. W. Mohd, and A. Misni, “Green Spaces Growth Impact on the Urban Microclimate,” Procedia - Soc. Behav. Sci., vol. 105, pp. 547–557, 2013, doi: 10.1016/j.sbspro.2013.11.058.
[24] S. N. A. Buyadi, W. M. N. W. Mohd, and A. Misni, “Vegetation’s Role on Modifying Microclimate of Urban Resident,” Procedia - Soc. Behav. Sci., vol. 202, no. May 2018, pp. 400–407, 2015, doi: 10.1016/j.sbspro.2015.08.244.
[25] A. Lemonsu, V. Masson, L. Shashua-Bar, E. Erell, and D. Pearlmutter, “Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas,” Geosci. Model Dev., vol. 5, no. 6, pp. 1377–1393, 2012, doi: 10.5194/gmd-5-1377-2012.
[26] N. H. Wong and T. T. Peck, “the Impact of Vegetation on the Environmental Conditions of Housing Estates in Singapore,” Int. J. Archit. Sci., vol. 6, no. 1, pp. 31–37, 2005.
[27] D. Adamovský and M. Kny, “Influence of Airflow on Thermal Comfort in an Energy-Saving House,” IOP Conf. Ser. Earth Environ. Sci., vol. 290, no. 1, pp. 232–240, 2019, doi: 10.1088/1755-1315/290/1/012141.

Downloads

Published

2021-01-16

How to Cite

SAYAD, B.; ALKAMA, D. MICROCLIMATIC REGULATION OF PALM TREES IN SEMI-ARID ENVIRONMENT DURING HEAT STRESS. Journal of Fundamental and Applied Sciences, [S. l.], v. 13, n. 2, p. 694–707, 2021. DOI: 10.4314/jfas.v13i2.4. Disponível em: https://jfas.info/index.php/JFAS/article/view/970. Acesso em: 30 jan. 2025.

Issue

Section

Articles