• R. T. Vashi Department of Chemistry, Navyug Science College, Rander Road, Surat, India
  • S. A. Zele Department of Chemistry, B.K.M. Science College, Tithal Road, Valsad, India
  • B. B. Patel 3Department of Chemistry, Bhagwan Mahavir College of Sci. and Technology, Surat, India
  • Neha I Prajapati Department of Chemistry, C. B. Patel Computer & J. N. M. Patel Science College, India




Zinc, H2SO4, N, N-Dimethylaniline, Corrosion, Polarization, EIS.


The inhibitive effect of N, N-Dimethylaniline (DMA) as corrosion inhibitor for zinc in 0.1, 0.3 and 0.5 M H2SO4 solutions has been investigated by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results obtained reveal that inhibition efficiency (I.E.) increases with increase in concentration of inhibitors but decreases with increase in temperature. As inhibitor concentration increases corrosion rate decreases. The rate constant ‘k’ decreases while half-life ‘t½’ increases with the increase in concentration of inhibitor. DMA showed maximum I. E. of 93.51 % at 60 mM in 0.5 M H2SO4 acid at 301 K. The inhibition effect is discussed in view of DMA molecules adsorbed on the metal surface and it obeys Langmuir adsorption isotherm. Polarization curve indicates that inhibitor act as mixed type for zinc corrosion in sulphuric acid solutions.


Download data is not yet available.


Askey A., Lyon S. B., Thampson G. E., Johnson J.B., Wood G. C., Cooke M. and Sage P. The corrosion of iron and zinc by atmospheric hydrogen chloride. Corros. Sci.,1993, 34(2), 233-338.

Taucher W., Binder L. and Kordesch K. Conductive fillers for immobilized alkaline zinc anodes. J. Appl. Electrochem., 1992, 22, 95-98.

Barcelo G., Sarret M., Muller C. and Pregonas J. Corrosion resistance and mechanical properties of zinc electro coatings. Electrochim. Acta., 1998, 43(1-2), 13-20.

Lin K. L., Yang C. F. J. and Lee J. T. Correlation of microstructure with corrosion and electrochemical behaviour of the batch type hot-dip Al-Zn coatings. Corrosion., 1991, 47, 9-23.

Sax N. I. and Lewis R. J., Sr. (eds.). Hawley's Condensed Chemical Dictionary, 11th edition, NewYork, Van Nostrand Reinhold Co. 1987.

Okafor P.C., Ebenso E.E. and Ekpe U. J. Inhibition of the acid corrosion of aluminium by some derivatives of thiosemicarbazone. Bull. Chem. Soc. Ethiop., 2004, 18, 181-192.

Eddy N. O. and Ebenso E. E. Adsorption and inhibitive properties of ethanol extracts of Musa sapientum peels as a green corrosion inhibitor for mild steel in H2SO4. Afri. J. Pure Appl. Chem., 2008, 2(6), 046-054.

Chauhan R., Garg U. and Tak R. K. Corrosion inhibition of aluminiumin acid media by Citrullus Colocynthis extract. J. Chem., 2011, 8, 85-90.

Obot I. B., Umoren S. A. and Obi-Egbedi N. O. Corrosion inhibition and adsorption behaviour for aluminuim by extract of Aningeriarobusta in HCl solution: Synergistic effect of iodide ions. J. Mater. Environ. Sci., 2011, 2, 49-60.

Khaled K. F. The Inhibition of Benzimidazole Derivatives on Corrosion of iron in 1 M HCl Solutions. Electrochimica Acta., 2003, 48, 2493-2503. DOI: 10.1016/S0013-4686(03)00291-3.

Bereket G., Hur E. and Ogretir C. Quantum Chemical Studies on Some Imidazole Derivatives as Corrosion Inhibitors for Iron in Acidic Medium. J. Molecular Stru., 2002, 578, 79-88. DOI: 10.1016/S0166-1280(01)00684-4.

Stupnišek-Lisac E., Podbršcˇek S. and Soric T. Non-toxic organic zinc corrosion inhibitors in hydrochloric acid. J. Appl. Electrochem., 1994, 24(8), 779-784.

Chen S., Zhang Z., Lin J., Qu S., Jia X., Zhu S. and Chen G. Investigation of Aniline and N,N- Dimethylaniline as Corrosion Inhibitor: a Structure-Efficiency Relationship Study, Russian J. Phy. Chem., B, 2020, 14, 1007-1013.

Vishwanathan S., Emranozzamar. Inhibition effect of some aniline compounds on corrosion of mild steel in 3 % HF. Ind. J. Chem. Tech., 1998, 5(4), 246-250.

Nahlé A., Alhammadi N. A., Abu-Abdoun I. and Abdel-Rahman I. Corrosion Inhibition of 1,4-Dimethyl phenyl-N,N-dimethylanilinium Dibromide Salt on Mild Steel in HCl Solution. J. Mater. Sci. and Engg.With Adv. Tech., 2019, 19(1), 1-27. DOI: 10.1108/00035590510584807.

Jakab M., Dan L. and Vaszilesin N. Inhibitory properties of N, N-dimethylaniline for copper in sulphuric acid solutions. Chem. Bull., 2015, 60 (74), 1.

Talati J. D. and Pandya J. M. Anilines as corrosion inhibitors for an aluminium-copper alloy in phosphoric acid. Corro. Sci., 1976, 16 (9), 603-612. DOI: 10.1016/S0010-938X(76)80019-4.

Kumar H. and Yadav V. Corrosion Characteristics of Mild Steel Under Different Atmospheric Conditions by Vapour Phase Corrosion Inhibitors. Amer. J. of Mater. Sci. and Eng., 2013, 1(3), 34-39. DOI:10.12691/ajmse-1-3-1.

Stroud E. G. The quantatative removal of corrosion product from zinc. J. Appl. Chem. 1951, 1, 93-95.

Baby N., Manjula P. and Manimegalai, S. Azole Drug: A Novel Inhibitor for Corrosion, Res. J. Chem. Sci. 2015, 5(2), 11-16.

El Etre A. Y., Abdallah M. and El-Tantawy Z. E. Corrosion inhibition of some metal using lawsonia extract. Corros. Sci., 2005, 47 (2), 385.

Eddy N. O. and Odoemelam S. A. Sparfloxacin and Norfloxacin as Corrosion Inhibitors for Mild Steel: Green Chemistry Letters and Reviews, Kinetics, Thermodynamics and Adsorption Consideration. J. Mater. Sci., 2008, 4(1), 1-5

Eddy N. O., Odoemelam S. A., Ogoko E. C. and Ita B. I. Inhibition of the Corrosion of Zinc in 0.01 – 0.04 M H2SO4 by Erythromycin, Port. Electrochim. Acta, 2010, 28(1), 15-26. DOI: 10.4152/pea.201001015.

Eddy N. O. Theoretical study on some amino acids and their potential activity as corrosion inhibitors for mild steel in HCl. Molecular Simulation., 2010, 36, 354–363. DOI: 10.1080/08927020903483270.

Bruker G. R. and Phipps P. B. Aliphatic amines as corrosion inhibitors for zinc in hydrochloric acid. Corros. Chem.ACS., 1979, 293.

Thomson, R. H. Naturally Occurring Quinones. third ed., Academic Press, London, New York., 1971, 74.

Martinez J. S. and Matikos-Hukovic M. A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors. J. Appl. Electrochem., 2003, 33, 1137-1147.

Hosseini, M.G., Mertens, S. F. L. and Arshadi M. R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecyl benzene sulphonate and hexamethylene tetraamine. Corros. Sci, 2003, 45, 1473-1489.

Mu G., Li X. and Liu G., Synergistic inhibition between 60 and NaCl on the corrosion of cold rolled steel in 0.5 M sulfuric acid. Corros. Sci., 2005, 47, 1932.

Bataineh T. T., Al-Qudah M. A., Nawafleh E. M. and Al Rawashdeh N. A. F. Sinapisalba extract as green corrosion inhibitor for aluminium in alkaline media. Int. J. Electrochem. Sci., 2014, 9, 3543-3557.

Mejeha I. M., Uroh A. A., Okeoma K. B. and Alozie G. A. The inhibitive effect of Solanum melongena L. leaf extract on the corrosion of aluminium in tetraoxosulphate (VI) acid. African J. Pure Appl. Chem., 2010, 4(8), 158-165.

Donahue F. M. and Nobe K. Theory of organic corrosion inhibitors and linear free energy relationship. J. Electrochem. Soc., 1965, 112, 886-891.

Tang Y., Zhang F., Huc S., Cao Z., Wu Z. and Jing W. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies. Corros. Sci., 2013, 74, 271-282.

Yaro A. S., Khadom A. A. and Ibraheem H. E. Peach juice as an anti-corrosion inhibitor of mild steel. Anti-corrosion Methods and Mater., 2011, 58(3), 116-124.

Prasanna B. M., Praveen B. M., Hebbar N. and Venktesha T. V. Anticorrosion potential of Hydralazine for corrosion of mild steel in 1 M Hydrochloric acid solution. J. Fund. Appl. Sci., 2015, 7(22), 222-243.

Issa R.M., El-Sonbati A. Z., El-Bindary A. A. and Kera H. M. Polymer complexes XXXIV. Potentiometric and thermodynamic studies of monomeric and polymeric complexes containing 2-acrylamidosulphadiazine. Eur. Polym. J., 2002, 38(3), 561-566.

Ebenso E. E. Effect of methyl red and halide ions on the corrosion inhibition of aluminium in H2SO4. Part 2, Bull. Electrochem., 2004, 20, 551.

Talati J. D. and Modi R. M. Inhibition of corrosion of aluminium-copper alloy in NaOH. Trans. SAEST., 1986, 11, 259.

Obot I. B., Umoren S. A. and Johnson A. S. Sunlight- mediated synthesis of silver nanoparticles using honey and its promising anticorrosion potentials for mild steel in acidic environments, J. Mater. Environ. Sci., 2013, 46, 1013-1018.

Li W., Zhao X., Liu F. and Hou B. Investigation on inhibition behaviour of S- triazole- derivatives in acidic solution. Corros. Sci., 2008, 50, 3261- 3266.

Shah A. M., Rahim A. A., Hamid S. A. and Yahya S. Green inhibitors for copper corrosion by mangrove tannin. Int. J. Electrochem. Sci., 2013, 8, 2140.

Khamis E., Ameer M. A., Al-Andis N. M. and Al-Senani G. Effect of thiosemicarbazones on corrosion of steel in phosphoric acid produced by wet process. Corrosion., 2000, 56, 127.

Souzac A. C., Mayb J. E., Machadoa A. T. Tacharda A. L. R. and Bidoiac E. D. Effect of temperature on the corrosion inhibition of iron base metallic glass alloy inneutral solutions. Surf. Coat. Tech., 2005, 75, 190.

Muralidharan S., Phani K. L. N., Pitchumani S., Ravichandran S. and Iyer S. V. K. Polyamino‐benzoquinone polymers: a new class of corrosion inhibitors for mild steel. J. Electrochem. Soc., 1995, 142 (5), 1478-1483.

Lgaz H., Salghi R., Jodeh S. and Hammouti B. Effect of clozapine on inhibition of mild steel in 1.0 M HCl medium. J. Mol. Liq., 2017, 225, 271-280.

Obot I. B. and Obi-Egbedi N. O. Indeno-1-one [2,3-b] quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5 M H2SO4 solution. Mater. Chem. Phys., 2010, 122 (2-3), 325.

Vaduva C. C. Vaszilcsin N. and Kellenberger A. Aromatic amines as proton carries for catalytic enhancement of hydrogen evolution reaction on copper in acid solution. Int. J. Hydrogen Eng., 2012, 37(17), 12089-12096.




How to Cite

VASHI, R. T. .; ZELE, S. A. .; PATEL , B. B. .; PRAJAPATI, N. I. N,N-DIMETHYLANILINE AS CORROSION INHIBITOR FOR ZINC IN SULPHURIC ACID MEDIUM. Journal of Fundamental and Applied Sciences, [S. l.], v. 14, n. 3, p. 607–625, 2022. DOI: 10.4314/jfas.1227. Disponível em: https://jfas.info/index.php/JFAS/article/view/1227. Acesso em: 25 sep. 2022.