IN VITRO AND IN SILICO ANTIOXYDANT ACTIVITY, TOXICITY PREDICTION, AND MOLECULAR DOCKING STUDY OF 3- AND 3,3'-NITROPHENYLFERROCENE AND THEIR REDUCED AMINES

Authors

  • Touhami Lanez University of El Oued, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Hacen Benamara University of El Oued, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Aicha Adaika University of El Oued, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Elhafnaoui Lanez University of El Oued, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Ali Khennoufa University of El Oued, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria
  • Nadjiba Zegheb University of El Oued, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria

DOI:

https://doi.org/10.4314/jfas.1239

Keywords:

Cyclic voltammetry, superoxide anion radical, binding parameters, toxicity, docking, Glutathione.

Abstract

The antioxidant activity of 3-nitrophenylferrocene (3NPF) and 3,3'-nitrophenylferrocene (3,3'NPF) and their reduced amines was measured using superoxide anion radical (). Binding parameters such as binding free energies and binding constants were also calculated.  sign and values suggest respectively the spontaneity and a strong interaction between the radical  and all studied compounds. Molecular docking study showed that 3NPF is most inreactive compound against glutathione reductase enzyme having the the lowest docking scores of -16.96 kJ/mol. The two reduced forms were predected to be non-toxic and are not inhibitors of CYP450 2C19, 2D6 isoenzymes which suggests a decrease in their plasma concentrations and a rapid elimination route.

Downloads

Download data is not yet available.

References

P. Molyneux, journal of sciences and technology. 26 (2003) 211-219

W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - Food Science and Technology. 28(1) (1995) 25-30.

N. J. Miller, A. T. Diplock, C. Rice-Evans, M. J. Davies, V. Gopinathan, A. Milner, Clinical Science. 84 (1993) 407-412.

K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. H. Byrne, Journal of Food Composition and Analysis, 19(6-7) (2006) 669-675

M.I. Gil, F. A. Tomás-Barberán, B. Hess-Pierce, A.A. Kader, Journal of Agricultural and Food Chemistry. 50(17) (2002) 4976-82.

N. Pellegrini, M. Serafini, B. Colombi, D. Del Rio, S. Salvatore, M. Bianchi, F. Brighenti. Journal of Nutrition. 133(9) (2003) 2812-2819.

A.M. Pisoschi, M.C. Cheregi, A.F. Danet. Molecules. 14(1) (2009) 480-493.

R.H. Bisby, R. Brooke, S. Navaratnam. Food Chemistry. 108(3) (2008) 1002–1007

P. Denev, M. Ciz, G. Ambrozova, A. Lojek, I. Yanakieva, M. Kratchanova, Food Chemistry. 123 (4) (2010) 1055–1061.

W. Chen, W. Ou, L. Wang, Y. Hao, J. Cheng, J. Li, You-Nian Liu, Dalton T, (2013) doi: 10.1039/C3DT51977E

R. Trivedi, S. B. Deepthi, L. Giribabu, B. Sridhar, P. Sujitha, C. G. Kumar, K. V. S. Ramakrishna, Eur. J. Inorg. Chem. (2012) , https://doi.org10.1002/ejic.201200038

W. B. Wang, D. Liu, D. W. Pi, Q. B. Liao, M. G. Liu, Adv. Mat. Res. (2013) doi: 10.4028/www.scientific.net/AMR.781-784.1085

R. Milaeva, S. I. Filimonova, N. N. Meleshonkova, L. G. Dubova, E. F. Shevtsova, S. O. Bachurin, N. S. Zefirov, Bioinorg Chem Appl (2010) https://doi.org10.1155/2010/165482

J. Zhang, R. Liu, J. Chem. Soc. Pak. A356, 33(3) (2011)

Zai-Qun Liu, Mini-Rev Med Chem, A345, 11(4) (2011)

G. Nabi, Z. Q. Liu, Bioorg Med Chem Lett, (2011) https://doi.org10.1016/j.bmcl.2010.12.051

S. Benabdesselam, T. Lanez, J. Chem. Pharm. Res. A825, 7(6) (2015)

A. Khelef, T. Lanez, Der Pharma Chemica. A318, 7(6) (2015)

S. Bollo, P. Jara-Ulloa, S. Finger, L.J. Núñez-Vergara, J.A. Squella, J Electroanal Chem (2005) https://doi.org10.1016/j.jelechem.2004.11.038

Wael M. El-Sayed, W. A. Hussin, A. A. Mahmoud, M. A. AlFredan, Biomed Res Int (2013) https://doi.org10.1155/2013/945638

Meleshonkova, L. G. Dubova, E. F. Shevtsova, Dalton T, (2013) https://doi.org10.1039/c3dt50160d

P. Valentão, E. Fernandes, F. Carvalho, P.B. Andrade, R. M. Seabra, M. de Lourdes Bastos, Biol Pharm Bull. A1320, 25(10) (2002)

M. Sano, R. Yoshida, M. Degawa, T. Miyase, K. Yoshino, J Agric Food Chem, A2912, 51(10) (2003)

H. Masaki, T. Atsumi, H. Sakurai, Free Radic Res, A419, 22(5) (1995)

R. D. Vianna, G. Bubols, G. Meirelles, B. V. Silva, A. Rocha, M. Lanznaster, J. M. Monserrat,

S. C. Garcia, G. Poser, V. L. Eifler-Lima, Int. J. Mol. Sci. (2012) https://doi.org10.3390/ijms13067260

T. Lanez, M. Henni, H. Hemmami, Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 16 (2) (2015) 161-168.

S. Ahmed, F. Shakeel, Czech J. Food Sci, 30(2) (2012) 153–163.

S. Ahmed, F. Shakeel, Pak. J. Pharm. Sci., 25(3) (2012) 501-507.

T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, Journal of Computational Chemistry 4 (1983) 294–301. https://doi.org/10.1002/JCC.540040303

N. Couto J. Wood, J. Barber, Free Radical Biology & Medicine 95 (2016) 27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028

C. Boubekri, A. Khelef, B. Terki, T. Lanez, I LCPA, A27, 49 (2015)

T. Lanez and PL. Pauson, J. Chem. Soc., Perkin Trans. 1, 1990, 2437-2442 https://doi.org/10.1039/P19900002437

G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, Journal of Computational Chemistry 30 (2009) 2785–2791. https://doi.org/10.1002/jcc.21256

O. Trott, A.J. Olson, Journal of Computational Chemistry 31 (2010) 455–461. https://doi.org/10.1002/jcc.21334

G.C. Zhao, J.J. Zhu, J.J. Zhang, H.Y. Chen, Anal. Chim. Acta, A337, (1999)

T. Eitrich, A. Kless, C. Druska, W. Meyer, J. Grotendorst, Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques, J. Chem. Inf. Model. 47 (2007) 92–103. https://doi.org/10.1021/CI6002619

M. Louet, C.M. Labbé, C. Fagnen, C.M. Aono, P. Homem-de-Mello, B.O. Villoutreix, M.A. Miteva, Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30, PLoS One. 13 (2018) e0197249. https://doi.org/10.1371/JOURNAL.PONE.0197249

R.A. Terkeltaub, D.E. Furst, J.L. Digiacinto, K.A. Kook, M.W. Davis, Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome P450 3A4/P-glycoprotein inhibitors, Arthritis Rheum. 63 (2011) 2226–2237. https://doi.org/10.1002/ART.30389

A. Zahno, K. Brecht, R. Morand, S. Maseneni, M. Török, P.W. Lindinger, S. Krähenbühl, The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells, Biochem. Pharmacol. 81 (2011) 432–441. https://doi.org/10.1016/J.BCP.2010.11.002

Becke A. D.: J. Chem. Phys., 1993, 98(7):5648.

http://dx.doi.org/10.1063/1.464913

Miehlich B., Savin A., Stoll H. et al.: Chem. Phys. Lett., 1989, 157:200.

http://dx.doi.org/10.1016/0009-2614(89)87234-3

Frisch M. J., Trucks G. W., Schlegel H. B. et al.: Gaussian, Inc., Wallingford CT, 2009.

Morris G. M., Ruth H., Lindstrom W. et al.:J. Comput. Chem., 2009, 30(16):2785.

http://dx.doi.org/10.1002/jcc.21256

Berman H. M., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28(1): 235.

Lanez T., Benaicha H., Lanez E. et al. : J. Sulfur Chem., 2017.

http://dx.doi.org/10.1080/17415993.2017.1391811

Downloads

Published

2022-04-26

How to Cite

LANEZ, T.; BENAMARA, H. .; ADAIKA, A.; LANEZ, E.; KHENNOUFA, A. .; ZEGHEB, N. IN VITRO AND IN SILICO ANTIOXYDANT ACTIVITY, TOXICITY PREDICTION, AND MOLECULAR DOCKING STUDY OF 3- AND 3,3’-NITROPHENYLFERROCENE AND THEIR REDUCED AMINES . Journal of Fundamental and Applied Sciences, [S. l.], v. 14, n. 2, p. 417–430, 2022. DOI: 10.4314/jfas.1239. Disponível em: https://jfas.info/index.php/JFAS/article/view/1239. Acesso em: 31 jan. 2025.

Issue

Section

Articles