CHEMICAL STRUCTURE, SUBSTITUTION EFFECT, AND DRUG-LIKENESS APPLIED TO QUERCETIN AND ITS DERIVATIVES

Authors

  • Salah Belaidi Group of Computational and Pharmaceutical Chemistry, Laboratory of Molecular Chemistry and Environment, University of Biskra, BP 145 Biskra 07000, Algeria
  • Abderrahmane Rouane Laboratoire Génie des Procédés et Environnement (GPE), Faculté de chimie, Université des sciences et technologies d'Oran (USTO), Algérie
  • Noureddine Tchouar Laboratoire Génie des Procédés et Environnement (GPE), Faculté de chimie, Université des sciences et technologies d'Oran (USTO), Algérie
  • Aicha Kerassa Group of Computational and Pharmaceutical Chemistry, Laboratory of Molecular Chemistry and environment, Department of Chemistry, University of Biskra, Algeria
  • Touhami Lanez VTRS Laboratory, Faculty of Sciences and Technology, University of El Oued, Algeria

DOI:

https://doi.org/10.4314/jfas.1278

Keywords:

Quercetin, Anti-Malaria activity, SAR, drug-like, Lipinski rule, HF, DFT,

Abstract

In the current study, molecular geometry, electronic structure, effect of the substitution, and structure physical-chemistry relationship for Quercetin derivatives have been studied by DFT (B3LYP) theory and Hartree-Fock (HF). The calculated values, net charges, MESP contours/surfaces have also been drawn to explain the electronic reactivity of Quercetin, bond lengths, dipole moments, heats of formation, QSAR properties, Lipinski’s parameters, Ligand efficiency (LE), Lipophilic Efficiency (LipE), are reported and discussed, to understand the  biological activity of the Quercetin Derivatives.

 

Downloads

Download data is not yet available.

References

Silvia H., Taleb., Karin., Fernando B. C., Dionéia C. R. O., Detection of flavonoids in glandular trichomes of Chromolaena species (Eupatorieae, Asteraceae) by reversed-phase high-performance liquid chromatography., Braz. J. Pharm.Sci, 2007, 2, 43.

Pyrzynska K., Biesaga M., Trends. Analyt. Chem, 2009, 28, 894, doi:10.1016/j.trac.2009.03.015

Dias T.A., Duarte C.L., Lima C.F., Proença M.F., Pereira W.C., Eur. J. Med. Chem., 2013, 65, 500-510, doi: 10.1016/j.ejmech.2013.04.064. .

Belaidi S., Belaidi H., and Bouzidi D. , Comput J. Theor. Nanosci. 2015, 12, 1737-1745, doi: 10.1166/jctn.2015.3952

Belaidi S., Mazri R., Belaidi H., Lanez T., Bouzidi D., Asian J. Chem.., 2013, 25, 16 , 9241, doi:10.14233/ajchem.2013.15199

Xiao J., Capanoglu E., Jassbi A., Miron A., Biotechnol. Adv., 2014, 11, 2, doi:10.1016/j.biotechadv.2014.11.002

Boeck P., Falca˜o C.A.B., Leal C.P., Yunes R.A., Filho V.C., Torres S.E.C., Rossi B.B., Bioorg. Med. Chem., 2006, 14, 1538–1545, doi:10.1016/j.bmc.2005.10.005

Beker B.Y., Bakır T., Sönmezoğlu I., İmer F., Apak R., Chem. Phys. Lipids, 2011. 164, 732–739, doi: 10.1016/j.chemphyslip.2011.09.001

Tarahovsky Y.S., Yagolnik E.A., Muzafarov E.N., Abdrasilov B.S., Kim Y.A., Biochim. Biophys. Acta., 2012, 1818, 695–702, doi: 10.1016/j.bbamem.2011.08.020.

Yamauchi K., Mitsunaga T., Inagaki M., Suzuki T., Bioorg. Med. Chem., 2014, 22, 3331–3340, doi:10.1016/j.bmc.2014.04.053

Zakharov A., Lagunin A., Filimonov D., Poroikov V., J. Chem. Res. Toxicol., 2012. 25, 2378, doi: 10.1021/tx300247r

Liaoa H., Changa Y., Linb Y., Yangb L., Chouc Y., Wanga B.B., QSAR Analysis of the Lipid Peroxidation Inhibitory Activity with Structure and Energetics of 36 Flavonoids Derivatives., J.Chin.Chem. Soc., 2006, 53, 1251-1261

Ke T., Xiao Z.B., Xiao Q.L., Yue Z., Ji H.S., Chao W.T., DaHai H., J. Comput. In Theor. Nanosci., 2014, 11, 1785, doi:10.1166/jctn.2014.3567

Is-ık E., S-ahin S., Demir C., Talanta, 2013, 111, 119–124, doi:10.1016/j.talanta.2013.02.053

Segall D.M., J. Curr. Pharma. Des., 2012, 18, 1292, doi: 10.2174/138161212799436430

Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P., Adv. Drug Deliv. Rev., 2012, 64, 4-17, doi:10.1016/j.addr.2012.09.019

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., and Kopple K.D.,

J. Med. Chem., 2002, 45, 2615, doi: 10.1021/jm020017n PMID: 12036371.

Belaidi S, Almi Z., Bouzidi D., J. Comput. Theor. Nanosci., 2014, 11(12), 2481-2488, doi:10.1166/jctn.2014.3665

Medjahed S., Belaidi S., Djekhaba S., Tchouar N., Kerassa A., J. Bionanosci., 2016, 10(2), 118-126, doi : 10.1166/jbns.2016.1358

Belaidi S., Salah T., Melkemi N., Sinha L., Prasad O., J. Comput. Theor. Nanosci., 2015, 12(9), 2421-2427, doi: 10.1166/jctn.2015.4042

Belaidi S., Lanez T., Omari M., Botrel A., Quantitative conformational analysis of dissymmetric macrolides by molecular modeling., Asian J. Chem., 2005, 17(2), 859-870

Melkemi N. and Belaidi S., J. Comput. Theor. Nanosci., 2014, 11, 801-806, doi:10.1166/jctn.2014.3431

Belaidi S., Youcef O., Salah T., and Lanez T., J. Comput. Theor. Nanosci. 2015, 12 (11), 4855-4861, doi:10.1166/jctn.2015.4451

Dermeche K., Tchouar N., Belaidi S., Salah T., J. Bionanosci. 2015, 9(5), 395-400, doi: 10.1166/jbns.2015.132025.

Rouane A., Tchouar N., Kerassa A., Cinar M., Belaidi S., J. Bionanosci. 2018, 12(2), 278-283, doi: 10.1166/jbns.2018.1511

Fouedjou R.T., Chtita S., Bakhouch M., Belaidi S., Ouassaf M., J. Biomol. Struct. Dyn., 2021, 1-15, doi: 10.1080/07391102.2021.1914170.

Ouassaf M., Belaidi S., Lotfy K., Daoud I., and Belaidi H., J. Bionanosci., 2018, 12,1-11, doi:10.1166/jbns.2018.1505

Belaidi H., Belaidi S., Katan C., Latouche C., Boucekkine A., J. Mol. Model., 2016, 22 (11), 1-8, doi : 10.1007/s00894-016-3132-8

HyperChem (Molecular Modeling System) Hypercube, Inc., 1115 NW, 4th Street, Gainesville, FL 32601, USA (2008).

Gaussian 09, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., calmaniG.S, Barone V., Mennucci B., Petersson G.A., Nakatsuji, Caricato H.M., Li X.,.Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E.,.Kudin K.N, Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., TomasiJ., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A., Farkas O., Foresman J.B., Ortiz J.Z., Cioslowski J. and Fox D.J., Gaussian Inc., Wallingford, CT (2010).

MarvinSketch. Chemaxon (http://www.chemaxon.com),

Database, [http://www.molinspiration.com].

Kerassa A., Belaidi S., Harkati D., Lanez T., Prasad O., Sinha L., Rev. Theor. Sci., 2016, 4, 85-96, doi: 10.1166/rits.2016.1050

Xue Y., Gong X., J. Mol. Struc-Theochem., 2009, 901, 226, doi:10.1016/j.theochem.2009.01.034

. Sidir I., Sidir Y.G., Kumalar M., and Tasal E., J. Mol. Struct., 2010, 964, 134-151, doi:10.1016/j.molstruc.2009.11.023

Balachandran V., and Parimala K., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 340, doi:10.1016/j.saa.2012.05.050

Lakshmi A., and Balachandran V., J. Mol. Struct., 2013, 1033, 40-50, doi:10.1016/j.molstruc.2012.08.002

Ramalingama S., Karabacak M., Periandy S., Puviarasan N., and Tanuja D.,

Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 207, doi:10.1016/j.saa.2012.03.090

Fleming I., Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York ,pp. 5,(1976).

Murray J.S., Sen K., Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, ( 1996).

Alkorta I., Perez J., Molecular polarization potential maps of the nucleic acid bases., Int. J. Quant. Chem., 1996, 57, 123.

Scrocco E., Tomasi J., Adv. Quantum Chem., 1978, 11. 115–193, doi: 10.1016/s0065-3276(08)60236-1

Luque F. J., J. Phys. Chem, 1993, 97, 9380, doi: 10.1063/1.467032

Sponer J., and Hobza P., DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations., Int. J. Quant. Chem., 1996, 57, 959.

Mellaoui M., Belaidi S., Bouzidi D., Gherraf N., Quantum Matter., 2014, 3(5), 435-441, doi: 10.1166/qm.2014.1142

Materska M., Quercetin and its Derivatives: Chemical Structure and Bioactivity, Pol. J. Food Nutr. Sci. 2008, 58(4), 407–413

Ooi T., Oobatake M., Nemethy G., Scheraga H.A., Proc. Natl. Acad. Sci., 1987, 84, 3086-3090, doi: 10.1073/pnas.84.10.3086

Akgül, Ö., Tarikoğullari A. H., Köse, F. A., Kirmizibayrak P. B., and Pabuççuoğlu M. V., Synthesis and cytotoxic activity of some 2-(2, 3-dioxo-2, 3-dihydro-1H-indol-1-yl) acetamide derivatives, Turk. J. Chem., 2013, 37(2), 204-212,

Schultes S., Graaf C., Haaksma E., Iwan J.P, and Kramer O., Drug Discov. Today Technol., 2010, 7, 157, doi: 10.1016/j.ddtec.2010.11.003

Kerassa A., Belaidi S., Lanez T., Quantum Matter., 2016, 5, 1, doi:10.1166/qm.2016.1253

Almi Z., Belaidi S., Segueni L., Rev. Theor. Sci., 2015, 3, 264-272, doi: 10.1166/rits.2015.1038

Wang, J., Xie, X. Q., Hou, T., & Xu, X. Fast approaches for molecular polarizability calculations, J. Phys. Chem. A, 2007, 111(20), 4443-4448.

Ouassaf M., Belaidi S., Al Mogren M.M., Chtita S., Khan S.U., Htar T.T., J. King Saud Univ. Sci.,2021, 101352, doi:10.1016/j.jksus.2021.101352

Andrasi M., Buglyo P., Zekany L., and Gaspar A J. Pharm. Biomed. Anal., 2007, 1040, doi: 10.1016/j.jpba.2007.04.024

Ertl P., Rohde B., and Selzer P., J. Med. Chem., 2000, 43, 3714, doi: 10.1021/jm000942e

Viswanadhan V.N., Ghose A.K., Revankar G.R., Robins R.K., J. Chem. Inf. Comput.,1989, 29, 163-172, doi:10.1021/ci00063a006

Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P., J. Adv. Drug Deliv. Rev., 2012, 4, 17, doi:10.1016/j.addr.2012.09.019

Vistoli G., Pedretti A., and Testa B., Drug. Discov. Today, 2008, 13, 285, doi: 10.1016/j.drudis.2007.11.007

Almi Z., Belaidi S., Melkemi N., Boughdiri S., Belkhiri L., Quantum.Matter. 2016, 5, 124, doi: https://doi.org/10.1166/qm.2016.1264

Lipinski C.A., Lombardo F., Dominy B.W., and P.J., Adv. Drug. Deliv. Rev., 1997, 23, 3, doi: 10.4236/jbise.2010.34051

Zegheb N, Boubekri C, Lanez T, Lanez E, Tüylü Küçükkılınç T, Öz E, Khennoufa A, Khamouli S, Belaidi S. In vitro and in silico determination of some N-ferrocenylmethylaniline derivatives as anti-proliferative agents against MCF-7 human breast cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22(7), 1426-1437, https://doi.org/10.2174/1871520621666210624141712

Khennoufa A, Bechki L, Lanez T, Lanez E, Zegheb N. Spectrophotometric, voltammetric and molecular docking studies of binding interaction of N-ferrocenylmethylnitroanilines with bovine serum albumin. Journal of Molecular Structure, 2021, 15, https://doi.org/10.1016/j.molstruc.2020.129052

Lanez T, Henni M. Antioxidant activity and superoxide anion radical interaction with 2-(ferrocenylmethylamino) benzonitrile and 3-(ferrocenylmethylamino) benzonitrile J. Iran. Chem. Soc., 2016, 13 (9), 1741-1748, https://doi.org/10.1007/s13738-016-0891-1

Lanez T, Benaicha H, Lanez E, Saidi M. Electrochemical, spectroscopic and molecular docking studies of 4-methyl-5-((phenylimino)methyl)-3H- and 5-(4-fluorophenyl)-3H-1,2-dithiole-3-thione interacting

with DNA. Journal of Sulfur Chemistry, 2018, 39(1), 76-88, https://doi.org/10.1080/17415993.2017.1391811

Downloads

Published

2023-01-02

How to Cite

BELAIDI, S.; ROUANE, A. .; TCHOUAR, N. .; KERASSA, A. .; LANEZ, T. . CHEMICAL STRUCTURE, SUBSTITUTION EFFECT, AND DRUG-LIKENESS APPLIED TO QUERCETIN AND ITS DERIVATIVES. Journal of Fundamental and Applied Sciences, [S. l.], v. 15, n. 1, p. 10–33, 2023. DOI: 10.4314/jfas.1278. Disponível em: https://jfas.info/index.php/JFAS/article/view/1278. Acesso em: 30 jan. 2025.

Issue

Section

Articles