CHEMICAL STRUCTURE, SUBSTITUTION EFFECT, AND DRUG-LIKENESS APPLIED TO QUERCETIN AND ITS DERIVATIVES
DOI:
https://doi.org/10.4314/jfas.1278Keywords:
Quercetin, Anti-Malaria activity, SAR, drug-like, Lipinski rule, HF, DFT,Abstract
In the current study, molecular geometry, electronic structure, effect of the substitution, and structure physical-chemistry relationship for Quercetin derivatives have been studied by DFT (B3LYP) theory and Hartree-Fock (HF). The calculated values, net charges, MESP contours/surfaces have also been drawn to explain the electronic reactivity of Quercetin, bond lengths, dipole moments, heats of formation, QSAR properties, Lipinski’s parameters, Ligand efficiency (LE), Lipophilic Efficiency (LipE), are reported and discussed, to understand the biological activity of the Quercetin Derivatives.
Downloads
References
Silvia H., Taleb., Karin., Fernando B. C., Dionéia C. R. O., Detection of flavonoids in glandular trichomes of Chromolaena species (Eupatorieae, Asteraceae) by reversed-phase high-performance liquid chromatography., Braz. J. Pharm.Sci, 2007, 2, 43.
Pyrzynska K., Biesaga M., Trends. Analyt. Chem, 2009, 28, 894, doi:10.1016/j.trac.2009.03.015
Dias T.A., Duarte C.L., Lima C.F., Proença M.F., Pereira W.C., Eur. J. Med. Chem., 2013, 65, 500-510, doi: 10.1016/j.ejmech.2013.04.064. .
Belaidi S., Belaidi H., and Bouzidi D. , Comput J. Theor. Nanosci. 2015, 12, 1737-1745, doi: 10.1166/jctn.2015.3952
Belaidi S., Mazri R., Belaidi H., Lanez T., Bouzidi D., Asian J. Chem.., 2013, 25, 16 , 9241, doi:10.14233/ajchem.2013.15199
Xiao J., Capanoglu E., Jassbi A., Miron A., Biotechnol. Adv., 2014, 11, 2, doi:10.1016/j.biotechadv.2014.11.002
Boeck P., Falca˜o C.A.B., Leal C.P., Yunes R.A., Filho V.C., Torres S.E.C., Rossi B.B., Bioorg. Med. Chem., 2006, 14, 1538–1545, doi:10.1016/j.bmc.2005.10.005
Beker B.Y., Bakır T., Sönmezoğlu I., İmer F., Apak R., Chem. Phys. Lipids, 2011. 164, 732–739, doi: 10.1016/j.chemphyslip.2011.09.001
Tarahovsky Y.S., Yagolnik E.A., Muzafarov E.N., Abdrasilov B.S., Kim Y.A., Biochim. Biophys. Acta., 2012, 1818, 695–702, doi: 10.1016/j.bbamem.2011.08.020.
Yamauchi K., Mitsunaga T., Inagaki M., Suzuki T., Bioorg. Med. Chem., 2014, 22, 3331–3340, doi:10.1016/j.bmc.2014.04.053
Zakharov A., Lagunin A., Filimonov D., Poroikov V., J. Chem. Res. Toxicol., 2012. 25, 2378, doi: 10.1021/tx300247r
Liaoa H., Changa Y., Linb Y., Yangb L., Chouc Y., Wanga B.B., QSAR Analysis of the Lipid Peroxidation Inhibitory Activity with Structure and Energetics of 36 Flavonoids Derivatives., J.Chin.Chem. Soc., 2006, 53, 1251-1261
Ke T., Xiao Z.B., Xiao Q.L., Yue Z., Ji H.S., Chao W.T., DaHai H., J. Comput. In Theor. Nanosci., 2014, 11, 1785, doi:10.1166/jctn.2014.3567
Is-ık E., S-ahin S., Demir C., Talanta, 2013, 111, 119–124, doi:10.1016/j.talanta.2013.02.053
Segall D.M., J. Curr. Pharma. Des., 2012, 18, 1292, doi: 10.2174/138161212799436430
Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P., Adv. Drug Deliv. Rev., 2012, 64, 4-17, doi:10.1016/j.addr.2012.09.019
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., and Kopple K.D.,
J. Med. Chem., 2002, 45, 2615, doi: 10.1021/jm020017n PMID: 12036371.
Belaidi S, Almi Z., Bouzidi D., J. Comput. Theor. Nanosci., 2014, 11(12), 2481-2488, doi:10.1166/jctn.2014.3665
Medjahed S., Belaidi S., Djekhaba S., Tchouar N., Kerassa A., J. Bionanosci., 2016, 10(2), 118-126, doi : 10.1166/jbns.2016.1358
Belaidi S., Salah T., Melkemi N., Sinha L., Prasad O., J. Comput. Theor. Nanosci., 2015, 12(9), 2421-2427, doi: 10.1166/jctn.2015.4042
Belaidi S., Lanez T., Omari M., Botrel A., Quantitative conformational analysis of dissymmetric macrolides by molecular modeling., Asian J. Chem., 2005, 17(2), 859-870
Melkemi N. and Belaidi S., J. Comput. Theor. Nanosci., 2014, 11, 801-806, doi:10.1166/jctn.2014.3431
Belaidi S., Youcef O., Salah T., and Lanez T., J. Comput. Theor. Nanosci. 2015, 12 (11), 4855-4861, doi:10.1166/jctn.2015.4451
Dermeche K., Tchouar N., Belaidi S., Salah T., J. Bionanosci. 2015, 9(5), 395-400, doi: 10.1166/jbns.2015.132025.
Rouane A., Tchouar N., Kerassa A., Cinar M., Belaidi S., J. Bionanosci. 2018, 12(2), 278-283, doi: 10.1166/jbns.2018.1511
Fouedjou R.T., Chtita S., Bakhouch M., Belaidi S., Ouassaf M., J. Biomol. Struct. Dyn., 2021, 1-15, doi: 10.1080/07391102.2021.1914170.
Ouassaf M., Belaidi S., Lotfy K., Daoud I., and Belaidi H., J. Bionanosci., 2018, 12,1-11, doi:10.1166/jbns.2018.1505
Belaidi H., Belaidi S., Katan C., Latouche C., Boucekkine A., J. Mol. Model., 2016, 22 (11), 1-8, doi : 10.1007/s00894-016-3132-8
HyperChem (Molecular Modeling System) Hypercube, Inc., 1115 NW, 4th Street, Gainesville, FL 32601, USA (2008).
Gaussian 09, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., calmaniG.S, Barone V., Mennucci B., Petersson G.A., Nakatsuji, Caricato H.M., Li X.,.Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E.,.Kudin K.N, Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., TomasiJ., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A., Farkas O., Foresman J.B., Ortiz J.Z., Cioslowski J. and Fox D.J., Gaussian Inc., Wallingford, CT (2010).
MarvinSketch. Chemaxon (http://www.chemaxon.com),
Database, [http://www.molinspiration.com].
Kerassa A., Belaidi S., Harkati D., Lanez T., Prasad O., Sinha L., Rev. Theor. Sci., 2016, 4, 85-96, doi: 10.1166/rits.2016.1050
Xue Y., Gong X., J. Mol. Struc-Theochem., 2009, 901, 226, doi:10.1016/j.theochem.2009.01.034
. Sidir I., Sidir Y.G., Kumalar M., and Tasal E., J. Mol. Struct., 2010, 964, 134-151, doi:10.1016/j.molstruc.2009.11.023
Balachandran V., and Parimala K., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 340, doi:10.1016/j.saa.2012.05.050
Lakshmi A., and Balachandran V., J. Mol. Struct., 2013, 1033, 40-50, doi:10.1016/j.molstruc.2012.08.002
Ramalingama S., Karabacak M., Periandy S., Puviarasan N., and Tanuja D.,
Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 207, doi:10.1016/j.saa.2012.03.090
Fleming I., Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York ,pp. 5,(1976).
Murray J.S., Sen K., Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, ( 1996).
Alkorta I., Perez J., Molecular polarization potential maps of the nucleic acid bases., Int. J. Quant. Chem., 1996, 57, 123.
Scrocco E., Tomasi J., Adv. Quantum Chem., 1978, 11. 115–193, doi: 10.1016/s0065-3276(08)60236-1
Luque F. J., J. Phys. Chem, 1993, 97, 9380, doi: 10.1063/1.467032
Sponer J., and Hobza P., DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations., Int. J. Quant. Chem., 1996, 57, 959.
Mellaoui M., Belaidi S., Bouzidi D., Gherraf N., Quantum Matter., 2014, 3(5), 435-441, doi: 10.1166/qm.2014.1142
Materska M., Quercetin and its Derivatives: Chemical Structure and Bioactivity, Pol. J. Food Nutr. Sci. 2008, 58(4), 407–413
Ooi T., Oobatake M., Nemethy G., Scheraga H.A., Proc. Natl. Acad. Sci., 1987, 84, 3086-3090, doi: 10.1073/pnas.84.10.3086
Akgül, Ö., Tarikoğullari A. H., Köse, F. A., Kirmizibayrak P. B., and Pabuççuoğlu M. V., Synthesis and cytotoxic activity of some 2-(2, 3-dioxo-2, 3-dihydro-1H-indol-1-yl) acetamide derivatives, Turk. J. Chem., 2013, 37(2), 204-212,
Schultes S., Graaf C., Haaksma E., Iwan J.P, and Kramer O., Drug Discov. Today Technol., 2010, 7, 157, doi: 10.1016/j.ddtec.2010.11.003
Kerassa A., Belaidi S., Lanez T., Quantum Matter., 2016, 5, 1, doi:10.1166/qm.2016.1253
Almi Z., Belaidi S., Segueni L., Rev. Theor. Sci., 2015, 3, 264-272, doi: 10.1166/rits.2015.1038
Wang, J., Xie, X. Q., Hou, T., & Xu, X. Fast approaches for molecular polarizability calculations, J. Phys. Chem. A, 2007, 111(20), 4443-4448.
Ouassaf M., Belaidi S., Al Mogren M.M., Chtita S., Khan S.U., Htar T.T., J. King Saud Univ. Sci.,2021, 101352, doi:10.1016/j.jksus.2021.101352
Andrasi M., Buglyo P., Zekany L., and Gaspar A J. Pharm. Biomed. Anal., 2007, 1040, doi: 10.1016/j.jpba.2007.04.024
Ertl P., Rohde B., and Selzer P., J. Med. Chem., 2000, 43, 3714, doi: 10.1021/jm000942e
Viswanadhan V.N., Ghose A.K., Revankar G.R., Robins R.K., J. Chem. Inf. Comput.,1989, 29, 163-172, doi:10.1021/ci00063a006
Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P., J. Adv. Drug Deliv. Rev., 2012, 4, 17, doi:10.1016/j.addr.2012.09.019
Vistoli G., Pedretti A., and Testa B., Drug. Discov. Today, 2008, 13, 285, doi: 10.1016/j.drudis.2007.11.007
Almi Z., Belaidi S., Melkemi N., Boughdiri S., Belkhiri L., Quantum.Matter. 2016, 5, 124, doi: https://doi.org/10.1166/qm.2016.1264
Lipinski C.A., Lombardo F., Dominy B.W., and P.J., Adv. Drug. Deliv. Rev., 1997, 23, 3, doi: 10.4236/jbise.2010.34051
Zegheb N, Boubekri C, Lanez T, Lanez E, Tüylü Küçükkılınç T, Öz E, Khennoufa A, Khamouli S, Belaidi S. In vitro and in silico determination of some N-ferrocenylmethylaniline derivatives as anti-proliferative agents against MCF-7 human breast cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22(7), 1426-1437, https://doi.org/10.2174/1871520621666210624141712
Khennoufa A, Bechki L, Lanez T, Lanez E, Zegheb N. Spectrophotometric, voltammetric and molecular docking studies of binding interaction of N-ferrocenylmethylnitroanilines with bovine serum albumin. Journal of Molecular Structure, 2021, 15, https://doi.org/10.1016/j.molstruc.2020.129052
Lanez T, Henni M. Antioxidant activity and superoxide anion radical interaction with 2-(ferrocenylmethylamino) benzonitrile and 3-(ferrocenylmethylamino) benzonitrile J. Iran. Chem. Soc., 2016, 13 (9), 1741-1748, https://doi.org/10.1007/s13738-016-0891-1
Lanez T, Benaicha H, Lanez E, Saidi M. Electrochemical, spectroscopic and molecular docking studies of 4-methyl-5-((phenylimino)methyl)-3H- and 5-(4-fluorophenyl)-3H-1,2-dithiole-3-thione interacting
with DNA. Journal of Sulfur Chemistry, 2018, 39(1), 76-88, https://doi.org/10.1080/17415993.2017.1391811
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Salah Belaidi, Abderrahmane Rouane, Noureddine Tchouar, Aicha Kerassa, Touhami Lanez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.