CONFORMATIONAL ANALYSIS AND STEREOCHEMICAL CONTROL IN MACROLIDES BY MOLECULAR MECHANICS AND BOLTZMANN DISTRIBUTION.
DOI:
https://doi.org/10.4314/jfas.1321Keywords:
Macrolide, Molecular mechanics, PM3, Boltzmann distribution, StereoselectivityAbstract
The Conformational analysis and stereochemical control of 20-Membered Macrolides were investigated using molecular mechanics calculations, PM3 semi-empirical method, and Boltzmann distribution. The results indicate that these macrocycles have a high degree of conformational flexibility. However, in the presence of tricarbonyliron, the number of favorable conformations was reduced to only four. The study also revealed significant diastereoselectivity (73:27) in B-type complexed macrolides. Furthermore, it was observed that the methyl group in position α2 had a local conformational effect that increased the diastereoselectivity of alkylation reactions. The high diastereoselectivity observed was attributed to the combination of stereochemical remote control with Fe(CO)3 and local control by the methyl group.
Downloads
References
Zotchev S. B., Curr. Med. Chem., 2003, 10, 211, doi: 10.2174/0929867033368448
Salomon A. R., Zhang Y., Seto H., and Khosla C., Org. Lett. 2001, 3, 57-59. https://doi.org/10.1021/ol006767d
Omura S. ‘’ Macrolide Antibiotics Chemistry Biology and Practice’’.Academic press New-York, 1984.
Gharbi-Benarous J., Evrard-Todeschi N., Ladam P., Bertho G., Delaforge M. and Girault J.P., J. Chem. Soc., Perkin Trans 2, 1999, 529. https://doi.org/10.1039/A808309F
Still W.C. and Galynker I., Tetrahedron, 1981, 37, 3981. https://doi.org/10.1016/S0040-4020(01)93273-9
Still W.C. and Novack V.J., J.Am.Chem.Soc., 1984, 106,1148. https://doi.org/10.1021/ja00316a072
Anet F. and Rawdah T.N., Conformations of cyclododecyne. Evidence from dynamic nuclear magnetic resonance spectroscopy and iterative force-field calculations, .Am.Chem.Soc., 1978, 100, 7166.
Allinger N.L., J. Am. Chem. Soc., 1977, 99, 8127. ttps://doi.org/10.1021/ja00467a001
Grée D.M., Kermarrec C.J.M., Martelli J.T., Grée R., Lellouche J.P. and Toupet L., J. Org. Chem., 1996, 61, 1918. https://doi.org/10.1021/jo9601270
Pinsard P., Lellouche J.P., Beaucourt J.P., Toupet L., Schio L. and Grée R., J. Org. Chem., 1989, 371, 219. https://doi.org/10.1016/S0040-4039(00)88745-6
Lewars E.G., Computational Chemistry, Springer International Publishing, Switzerland, 2016, https://doi.org/10.1007/978-3-319-30916-3
Medjahed S, Belaidi S, Djekhaba S, Tchouar N, Kerassa A, J. Bionanosci. 2016, 10 (2), 118-126. https://doi.org/10.1166/jbns.2016.1358
Ouassaf M., Belaidi S., Chtita S., Lanez T., Abul Qais F., Md Amiruddin H. J. Biomol. Struct. Dyn. 2022,40,11264-11273. https://doi.org/10.1080/07391102.2021.1957712
Ouassaf, M., Belaidi ,S., ALMogren ,M.M., Samir Chtita,S., Khan,S.U., Htar,T. J. King Saud Univ. Sci.,2021, 33, 101352. https://doi.org/10.1016/j.jksus.2021.101352
Dermeche K., Tchouar N., Belaidi S., Salah T., J. Bionanosci.2015, 9,395-400. https://doi.org/10.1166/jbns.2015.1320
Ouassaf M., Belaidi S., Lotfy K., Daoud I., Belaidi H., J. Bionanosci., 2018, 12, 26-36. https://doi.org/10.1166/jbns.2018.1505
Belaidi S, Belaidi H, Bouzidi D, J. Comput. Theor. Nanosci. 2015, 12 (8), 1737-1745.
Belaidi S, Lanez T, Omari M, Botrel A ,Quantitative conformational analysis of dissymmetric macrolides by molecular modeling, Asian J. Chem. 2005,17 (2), 859-870.
Allinger N.L., Zhou X. and Bergsma J., J. Mol. Struct. (Theochem), 1994, 312, 69. doi:10.1016/S0166-1280(09)80008-0
HyperChem release 8.09, molecular modeling system, Hypercube Inc., 1115 NW 4th Street, Gainesville, FL 32601, USA, 2012.
C.S.Chem 3D Pro, Molecular modelling and Analysis, Cambridge Soft Corporation, 875 Massachusetts, Avenue Cambridge, Massachusetts, 02139 U.S.A, 2016
Salah T, Belaidi S, Melkemi N, Tchouar N, Rev. Theor. Sci. 2015, 3 (4), 355-364. https://doi.org/10.1166/rits.2015.1040
Almi Z., Belaidi S., Segueni L., Rev. Theor. Sci. 2015, 3, 264-272. https://doi.org/10.1166/rits.2015.1038
Belaidi S., Mazri R., Belaidi H., Lanez T., Bouzidi D., Asian J. Chem. ,2013, 25, 9241. https://doi.org/10.14233/ajchem.2013.15199
McQuarrie, A. Statistical Mechanics. University Science Books, Sausalito, CA, USA, 2000.
Atkins, P. W. Quanta, W. H. Freeman and Company Publishers Ltd, New York, 2010
Belaidi S, Youcef O, Salah T and Lanez T, J. Comput. Theor. Nanos., 2015, 12 (11), 4855-4861, https://doi.org/10.1166/jctn.2015.4451
Belaidi S, Laabassi M, Gree R, Botrel A, Analyse Multiconformationnelle des Macrolides Symétriques de 12 À 28 Chaînons Basée sur la Mécanique Moléculaire, Scientific Study & Research , 2003,4, 27-38
Belaidi S, Almi Z , Bouzidi D, J. Comput. Theor. Nanosci. 2014, 11 (12), 2481-2488. https://doi.org/10.1166/jctn.2014.3665
Soualmia F., Belaidi S ., Tchouar N., Lanez T., Review of computational studies applied in new macrolide antibiotics. J. Fundam. Appl. Sci., 2019, 12(1S), 392–415.
Belaidi S, Dibi A, Omari M, A conformational exploration of dissymmetric macrolides antibiotics, Turk. J. Chem., 2002, 26 (4), 491-500.
Saunders M., Houk K.N., Wu Y.D., Still W. S. and Guida W.C., Conformations of cycloheptadecane. A comparison of methods for conformational searching , J.Am.Chem. Soc., 1990,112,1419.
Grée R. and Lellouche J.P., « Advances in metal organic chemistry », Lanny. S. Lerbeskind Ed, Vol 4, 1994
Menager E., thèse de doctorat, Université de Rennes 1, 1994.
Yamazaki T., Ando M., Kitazume T., Kubota T. and Omura M., Conformational Fixation of Enolates by Intramolecular Metal•••Fluorine Interaction. Org. Lett., 1999, 6, 905–908.
Vedejs E., Dent W.H., Gapinski D.M. and Clure C.K., Local conformer effects in unsaturated lactones J.Am. Chem. Soc., 1987, 109, 5437-5446
Schio L., Thèse de Doctorat, Université de Rennes 1, 1990.
Takahashi T.,Yokoyama H.,Yamada H., Haino T. and Fukazawa Y., Syn. Lett., 1993, 7, 494-496, doi:10.1055/s-1993-22503
Takahashi T., Sakamoto Y. , Doi T. Tetrahedron Lett., 1992, 33, 3519-3522. https://doi.org/10.1016/S0040-4039(00)92678-9
Zegheb N, Boubekri C, Lanez T, Lanez E, Tüylü Küçükkılınç T, Öz E, Khennoufa A, Khamouli S, Belaidi S. In vitro and in silico determination of some N-ferrocenylmethylaniline derivatives as anti-proliferative agents against MCF-7 human breast cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22(7), 1426-1437, https://doi.org/10.2174/1871520621666210624141712
Khennoufa A, Bechki L, Lanez T, Lanez E, Zegheb N. Spectrophotometric, voltammetric and molecular docking studies of binding interaction of N-ferrocenylmethylnitroanilines with bovine serum albumin. Journal of Molecular Structure, 2021, 15, https://doi.org/10.1016/j.molstruc.2020.129052
Lanez T, Henni M. Antioxidant activity and superoxide anion radical interaction with 2-(ferrocenylmethylamino) benzonitrile and 3-(ferrocenylmethylamino) benzonitrile J. Iran. Chem. Soc., 2016, 13 (9), 1741-1748, https://doi.org/10.1007/s13738-016-0891-1
Lanez T, Benaicha H, Lanez E, Saidi M. Electrochemical, spectroscopic and molecular docking studies of 4-methyl-5-((phenylimino)methyl)-3H- and 5-(4-fluorophenyl)-3H-1,2-dithiole-3-thione interacting
with DNA. Journal of Sulfur Chemistry, 2018, 39(1), 76-88, https://doi.org/10.1080/17415993.2017.1391811
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Fundamental and Applied Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.